graycomatrix生成共生矩阵
graycoprops计算其特征值
具体用法:
glcm = graycomatrix(I)
从图像I创建灰度共生矩阵glcm。通过计算具有灰度级i和灰度级j的像素对在水平方向相邻出现的频繁程度。glcm中的每个元素说明了水平方向相邻像素对出现的次数。如果灰度级为L则glcm的维数为L*L。
2.glcms = graycomatrix(I,param1,val1,param2,val2,...)
根据参数对的设定,返回一个或多个灰度共生矩阵。
参数说明:
'GrayLimits':灰度界限,为二元向量[low high]。灰度值小于等于low 时对应1,大于等于high时对应于灰度级。如果参数设为[],则共生矩阵使用图像的最小和最大灰度值作为界限,即[min(I(:)) max(I(:))]。
'NumLevels':整数,说明I中进行灰度缩放的灰度级数目。例如,如果NumLevel设为8,则共生矩阵缩放I中的灰度值使它们为1到8之间的整数。灰度级的数目决定了共生矩阵glcm的尺寸。缺省情况:数字图像:8;二进制图像:2。
'Offset':p行2列整型矩阵,说明感兴趣像素与其相邻像素之间的距离。每行是一个说明像素对之间偏移关系的二元向量[row_offset, col_offset]。行偏移row_offset是感兴趣像素和其相邻像素之间的间隔行数。列偏移同理。偏移常表达为一个角度,常用的角度如下:(其中D为像素距离)
角度 0 45 90 135
Offset [0,D] [-D D] [-D 0] [-D -D]
3.[glcms,SI] = graycomatrix(...)
返回缩放图像SI,SI是用来计算灰度共生矩阵的。SI中的元素值介于1和灰度级数目之间。
graycoprops:得到灰度共生矩阵得到各种属性
stats = graycoprops(glcm, properties):从灰度共生矩阵glcm计算静态属性。glcm是m*n*p的有效灰度共生矩阵。如果glcm是一个灰度共生矩阵的矩阵,则stats是包括每个灰度共生矩阵静态属性的矩阵。
graycoprops正规化了灰度共生矩阵,因此元素之和为1。正规化的GLCM中的元素(r,c)是具有灰度级r和c的定义的空间关系的像素对的联合概率。Graycoprops使用正规化的GLCM来计算属性。
属性参数如下:
1. 'Contrast' : 对比度。返回整幅图像中像素和它相邻像素之间的亮度反差。取值范围:[0,(GLCM行数-1)^2]。灰度一致的图像,对比度为0。
2. 'Correlation' : 相关。返回整幅图像中像素与其相邻像素是如何相关的度量值。取值范围:[-1,1]。灰度一致的图像,相关性为NaN。
3. 'Energy' : 能量。返回GLCM中元素的平方和。取值范围:[0 1]。灰度一致的图像能量为1。
4. 'Homogemeity' : 同质性。返回度量GLCM中元素的分布到对角线紧密程度。取值范围:[0 1]。对角矩阵的同质性为1。
%**************************************************************************% 图像检索——纹理特征
%基于共生矩阵纹理特征提取,d=1,θ=0°,45°,90°,135°共四个矩阵
%所用图像灰度级均为256
%参考《基于颜色空间和纹理特征的图像检索》
%function : T=Texture(Image)
%Image : 输入图像数据
%T : 返回八维纹理特征行向量
%**************************************************************************
function T = Texture(path)
Image = imread(path)
% [M,N,O] = size(Image)
M = 256
N = 256
if isrgb(Image)%判断是否是RGB
Gray=rgb2gray(Image)
end
%--------------------------------------------------------------------------
%1.将各颜色分量转化为灰度
%--------------------------------------------------------------------------
%Gray = double(0.3*Image(:,:,1)+0.59*Image(:,:,2)+0.11*Image(:,:,3))
%--------------------------------------------------------------------------
%2.为了减少计算量,对原始图像灰度级压缩,将Gray量化成16级
%--------------------------------------------------------------------------
for i = 1:M
for j = 1:N
for n = 1:256/16
if (n-1)*16<=Gray(i,j)&Gray(i,j)<=(n-1)*16+15
Gray(i,j) = n-1
end
end
end
end
%--------------------------------------------------------------------------
%3.计算四个共生矩阵P,取距离为1,角度分别为0,45,90,135
%--------------------------------------------------------------------------
P = zeros(16,16,4)
for m = 1:16
for n = 1:16
for i = 1:M
for j = 1:N
if j
P(m,n,1) = P(m,n,1)+1
P(n,m,1) = P(m,n,1)
end
if i>1&j
P(m,n,2) = P(m,n,2)+1
P(n,m,2) = P(m,n,2)
end
if i
P(m,n,3) = P(m,n,3)+1
P(n,m,3) = P(m,n,3)
end
if i
P(m,n,4) = P(m,n,4)+1
P(n,m,4) = P(m,n,4)
end
end
end
if m==n
P(m,n,:) = P(m,n,:)*2
end
end
end
%%---------------------------------------------------------
% 对共生矩阵归一化
%%---------------------------------------------------------
for n = 1:4
P(:,:,n) = P(:,:,n)/sum(sum(P(:,:,n)))
end
%--------------------------------------------------------------------------
%4.对共生矩阵计算能量、熵、惯性矩、相关4个纹理参数
%--------------------------------------------------------------------------
H = zeros(1,4)
I = H
Ux = HUy = H
deltaX= HdeltaY = H
C =H
for n = 1:4
E(n) = sum(sum(P(:,:,n).^2))%%能量
for i = 1:16
for j = 1:16
if P(i,j,n)~=0
H(n) = -P(i,j,n)*log(P(i,j,n))+H(n)%%熵
end
I(n) = (i-j)^2*P(i,j,n)+I(n)%%惯性矩
Ux(n) = i*P(i,j,n)+Ux(n)%相关性中μx
Uy(n) = j*P(i,j,n)+Uy(n)%相关性中μy
end
end
end
for n = 1:4
for i = 1:16
for j = 1:16
deltaX(n) = (i-Ux(n))^2*P(i,j,n)+deltaX(n)%相关性中σx
deltaY(n) = (j-Uy(n))^2*P(i,j,n)+deltaY(n)%相关性中σy
C(n) = i*j*P(i,j,n)+C(n)
end
end
C(n) = (C(n)-Ux(n)*Uy(n))/deltaX(n)/deltaY(n)%相关性
end
%--------------------------------------------------------------------------
%求能量、熵、惯性矩、相关的均值和标准差作为最终8维纹理特征
%--------------------------------------------------------------------------
T(1) = mean(E)T(2) = sqrt(cov(E))
T(3) = mean(H)T(4) = sqrt(cov(H))
T(5) = mean(I)T(6) = sqrt(cov(I))
T(7) = mean(C)T(8) = sqrt(cov(C))
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)