Python程序的目录为 F:\hello.py
在命令行 中进入pyinstaller所在的目录,运行python pyinstaller.py F:\hello.py
在PyInstaller-2.1目录下,生成文件夹hello
hello目录下有文件
exe文件在dist目录下
如果将python文件复制到 pyinstaller.py 所在目录下,则运行 python pyinstaller.py hello.py
Caffe是目前深度学习比较优秀好用的一个开源库,采样c++和CUDA实现,具有速度快,模型定义方便等优点。学习了几天过后,发现也有一个不方便的地方,就是在我的程序中调用Caffe做图像分类没有直接的接口。Caffe的数据层可以从数据库(支持leveldb、lmdb、hdf5)、图片、和内存中读入。我们要在程序中使用,当然得从内存中读入,我们首先在模型定义文件中定义数据层:layers {
name: "mydata"
type: MEMORY_DATA
top: "data"
top: "label"
transform_param {
scale: 0.00390625
}
memory_data_param {
batch_size: 10
channels: 1
height: 24
width: 24
}
}
这里必须设置memory_data_param中的四个参数,对应这些参数可以参见源码中caffe.proto文件。现在,我们可以设计一个Classifier类来封装一下:
#ifndef CAFFE_CLASSIFIER_H
#define CAFFE_CLASSIFIER_H
#include <string>
#include <vector>
#include "caffe/net.hpp"
#include "caffe/data_layers.hpp"
#include <opencv2/core.hpp>
using cv::Mat
namespace caffe {
template <typename Dtype>
class Classifier {
public:
explicit Classifier(const string&param_file, const string&weights_file)
Dtype test(vector<Mat>&images, vector<int>&labels, int iter_num)
virtual ~Classifier() {}
inline shared_ptr<Net<Dtype>>net() { return net_}
void predict(vector<Mat>&images, vector<int>*labels)
void predict(vector<Dtype>&data, vector<int>*labels, int num)
void extract_feature(vector<Mat>&images, vector<vector<Dtype>>*out)
protected:
shared_ptr<Net<Dtype>>net_
MemoryDataLayer<Dtype>*m_layer_
int batch_size_
int channels_
int height_
int width_
DISABLE_COPY_AND_ASSIGN(Classifier)
}
}//namespace
#endif //CAFFE_CLASSIFIER_H
构造函数中我们通过模型定义文件(.prototxt)和训练好的模型(.caffemodel)文件构造一个Net对象,并用m_layer_指向Net中的memory data层,以便待会调用MemoryDataLayer中AddMatVector和Reset函数加入数据。
#include <cstdio>
#include <algorithm>
#include <string>
#include <vector>
#include "caffe/net.hpp"
#include "caffe/proto/caffe.pb.h"
#include "caffe/util/io.hpp"
#include "caffe/util/math_functions.hpp"
#include "caffe/util/upgrade_proto.hpp"
#include "caffe_classifier.h"
namespace caffe {
template <typename Dtype>
Classifier<Dtype>::Classifier(const string&param_file, const string&weights_file) : net_()
{
net_.reset(new Net<Dtype>(param_file, TEST))
net_->CopyTrainedLayersFrom(weights_file)
//m_layer_ = (MemoryDataLayer<Dtype>*)net_->layer_by_name("mnist").get()
m_layer_ = (MemoryDataLayer<Dtype>*)net_->layers()[0].get()
batch_size_ = m_layer_->batch_size()
channels_ = m_layer_->channels()
height_ = m_layer_->height()
width_ = m_layer_->width()
}
template <typename Dtype>
Dtype Classifier<Dtype>::test(vector<Mat>&images, vector<int>&labels, int iter_num)
{
m_layer_->AddMatVector(images, labels)
//
int iterations = iter_num
vector<Blob<Dtype>* >bottom_vec
vector<int>test_score_output_id
vector<Dtype>test_score
Dtype loss = 0
for (int i = 0i <iterations++i) {
Dtype iter_loss
const vector<Blob<Dtype>*>&result =
net_->Forward(bottom_vec, &iter_loss)
loss += iter_loss
int idx = 0
for (int j = 0j <result.size()++j) {
const Dtype* result_vec = result[j]->cpu_data()
for (int k = 0k <result[j]->count()++k, ++idx) {
const Dtype score = result_vec[k]
if (i == 0) {
test_score.push_back(score)
test_score_output_id.push_back(j)
} else {
test_score[idx] += score
}
const std::string&output_name = net_->blob_names()[
net_->output_blob_indices()[j]]
LOG(INFO) <<"Batch " <<i <<", " <<output_name <<" = " <<score
}
}
}
loss /= iterations
LOG(INFO) <<"Loss: " <<loss
return loss
}
template <typename Dtype>
void Classifier<Dtype>::predict(vector<Mat>&images, vector<int>*labels)
{
int original_length = images.size()
if(original_length == 0)
return
int valid_length = original_length / batch_size_ * batch_size_
if(original_length != valid_length)
{
valid_length += batch_size_
for(int i = original_lengthi <valid_lengthi++)
{
images.push_back(images[0].clone())
}
}
vector<int>valid_labels, predicted_labels
valid_labels.resize(valid_length, 0)
m_layer_->AddMatVector(images, valid_labels)
vector<Blob<Dtype>* >bottom_vec
for(int i = 0i <valid_length / batch_size_i++)
{
const vector<Blob<Dtype>*>&result = net_->Forward(bottom_vec)
const Dtype * result_vec = result[1]->cpu_data()
for(int j = 0j <result[1]->count()j++)
{
predicted_labels.push_back(result_vec[j])
}
}
if(original_length != valid_length)
{
images.erase(images.begin()+original_length, images.end())
}
labels->resize(original_length, 0)
std::copy(predicted_labels.begin(), predicted_labels.begin() + original_length, labels->begin())
}
template <typename Dtype>
void Classifier<Dtype>::predict(vector<Dtype>&data, vector<int>*labels, int num)
{
int size = channels_*height_*width_
CHECK_EQ(data.size(), num*size)
int original_length = num
if(original_length == 0)
return
int valid_length = original_length / batch_size_ * batch_size_
if(original_length != valid_length)
{
valid_length += batch_size_
for(int i = original_lengthi <valid_lengthi++)
{
for(int j = 0j <sizej++)
data.push_back(0)
}
}
vector<int>predicted_labels
Dtype * label_ = new Dtype[valid_length]
memset(label_, 0, valid_length)
m_layer_->Reset(data.data(), label_, valid_length)
vector<Blob<Dtype>* >bottom_vec
for(int i = 0i <valid_length / batch_size_i++)
{
const vector<Blob<Dtype>*>&result = net_->Forward(bottom_vec)
const Dtype * result_vec = result[1]->cpu_data()
for(int j = 0j <result[1]->count()j++)
{
predicted_labels.push_back(result_vec[j])
}
}
if(original_length != valid_length)
{
data.erase(data.begin()+original_length*size, data.end())
}
delete [] label_
labels->resize(original_length, 0)
std::copy(predicted_labels.begin(), predicted_labels.begin() + original_length, labels->begin())
}
template <typename Dtype>
void Classifier<Dtype>::extract_feature(vector<Mat>&images, vector<vector<Dtype>>*out)
{
int original_length = images.size()
if(original_length == 0)
return
int valid_length = original_length / batch_size_ * batch_size_
if(original_length != valid_length)
{
valid_length += batch_size_
for(int i = original_lengthi <valid_lengthi++)
{
images.push_back(images[0].clone())
}
}
vector<int>valid_labels
valid_labels.resize(valid_length, 0)
m_layer_->AddMatVector(images, valid_labels)
vector<Blob<Dtype>* >bottom_vec
out->clear()
for(int i = 0i <valid_length / batch_size_i++)
{
const vector<Blob<Dtype>*>&result = net_->Forward(bottom_vec)
const Dtype * result_vec = result[0]->cpu_data()
const int dim = result[0]->count(1)
for(int j = 0j <result[0]->num()j++)
{
const Dtype * ptr = result_vec + j * dim
vector<Dtype>one_
for(int k = 0k <dim++k)
one_.push_back(ptr[k])
out->push_back(one_)
}
}
if(original_length != valid_length)
{
images.erase(images.begin()+original_length, images.end())
out->erase(out->begin()+original_length, out->end())
}
}
INSTANTIATE_CLASS(Classifier)
} // namespace caffe
由于加入的数据个数必须是batch_size的整数倍,所以我们在加入数据时采用填充的方式。
CHECK_EQ(num % batch_size_, 0) <<
"The added data must be a multiple of the batch size." //AddMatVector
在模型文件的最后,我们把训练时的loss层改为argmax层:
layers {
name: "predicted"
type: ARGMAX
bottom: "prob"
top: "predicted"
}
转载
1.首先要准备几样东西:(1)要预测的图像,需要32×32大小
(2)网络配置文件,prototxt,以及每个图像的路径及其序号。
(3)训练好的caffemodel以及均值二进制文件,貌似可以定值,需要通过数据训练计算得到。
(3)预测的主程序
内容:
View Code
2.结果:
View Code
各个类别图示:
3.后记
上面是用CPU跑的,我还等了几秒钟,用了下GPU处理,瞬间,真的很快,Enter完就出结果了。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)