一维复数序列的快速傅里叶变换(FFT)

一维复数序列的快速傅里叶变换(FFT),第1张

设x(N)为N点有限长离散序列,代入式(8-3)、式(8-4),并令 其傅里叶变换(DFT)为

地球物理数据处理基础

反变换(IDFT)为

地球物理数据处理基础

两者的差异只在于W的指数符号不同,以及差一个常数1/N,因此下面我们只讨论DFT正变换式(8-5)的运算量,其反变换式(8-6)的运算是完全相同的。

一般来说,W是复数,因此,X(j)也是复数,对于式(8-5)的傅里叶变换(DFT),计算一个X(j)值需要N次复数乘法和N-1次复数加法。而X(j)一共有N个值(j=0,1,…,N-1),所以完成整个DFT运算总共需要N2次复数乘法和N(N-1)次复数加法。

直接计算DFT,乘法次数和加法次数都是与N2成正卜颂茄比的,当N很大时,运算量会很大,例如,当N=8时,DFT需64次复数乘法;而当N=1024时,DFT所需乘法为1048576次,即一百多万次的复数乘法运算,对运算速度要求高。所以需要改进DFT的计算方法,以减少运算次数。

分析Wjk,表面上有N2个数值,由于其周期性,实际上仅有N个不同的值W0,W1,…,WN-1。对于N=2m时,由于其对称性,只有N/2个不同的值W0,W1,…,

地球物理数据处理基础

因此可以把长序列的DFT分解为短序列DFT,而前面已经分析DFT与N2成正比,所以N越小越有利。同时,利用ab+ac=a(b+c)结合律法则,可以将同一个Wr对应的系数x(k)相加后再乘以Wr,就能大大减少运算次数。这就是快速傅里叶变换(FFT)的算法思路。

下面,我们来分析N=2m情况下的FFT算法。

1.N=4的FFT算法

对于m=2,N=4,式(8-5)傅里叶变换为

地球物理数据处理基础

将式(8-7)写成矩阵樱芹形式

地球物理数据处理基础

为了便于分析,将上式中的j,k写成二进制形式,即

地球物理数据处理基础

代入式(8-7),得

地球物理数据处理基础

分析Wjk的周期性来减少乘法次数

地球物理数据处理基础

则 代回式(8-9),整理得

地球物理数据处理基础

上式可分层计算,先计算内层,再计算外层时就利用内层计算的结果,可避免重复计算。写成分层形式

地球物理数据处理基础

则X(j1 j0)=X2(j1 j0)。

上式表明对于N=4的FFT,利用Wr的周期关系可分为m=2步计算。实际上,利用Wr的对称性,仍可型察以对式(8-11)进行简化计算。考虑到

地球物理数据处理基础

式(8-11)可以简化为

地球物理数据处理基础

令j=j0;k=k0,并把上式表示为十进制,得

地球物理数据处理基础

可以看到,完成上式N=4的FFT计算(表8-1)需要N·(m-1)/2=2次复数乘法和N·m=8次复数加法,比N=4的DFT算法的N2=16次复数乘法和N·(N-1)=12次复数加法要少得多。

表8-1 N=4的FFT算法计算过程

注:W0=1;W1=-i。

[例1]求N=4样本序列1,3,3,1的频谱(表8-2)。

表8-2 N=4样本序列

2.N=8的FFT算法

类似N=4的情况,用二进制形式表示,有

地球物理数据处理基础

写成分层计算的形式:

地球物理数据处理基础

则X(j2 j1 j0)=X3(j2 j1 j0)。

对式(8-14)的X1(k1 k0 j0)进行展开,有

地球物理数据处理基础

还原成十进制,并令k=2k1+k0,即k=0,1,2,3,有

地球物理数据处理基础

用类似的方法对式(8-14)的X2(k0 j1 j0),X3(j2 j1 j0)进行展开,整理得

地球物理数据处理基础

用式(8-16)、式(8-17)逐次计算到X3(j)=X(j)(j=0,1,…,7),即完成N=23=8的FFT计算,其详细过程见表8-3。

表8-3 N=8的FFT算法计算过程

注:对于正变换 对于反变换 所

[例2]求N=8样本序列(表8-4)x(k)=1,2,1,1,3,2,1,2的频谱。

表8-4 N=8样本序列

3.任意N=2m的FFT算法

列出N=4,N=8的FFT计算公式,进行对比

地球物理数据处理基础

观察式(8-18)、式(8-19),不难看出,遵循如下规律:

(1)等式左边的下标由1递增到m,可用q=1,2,…,m代替,则等式右边为q-1;

(2)k的上限为奇数且随q的增大而减小,至q=m时为0,所以其取值范围为k=0,1,2,…,(2m-q-1);

(3)j的上限为奇数且随q的增大而增大,且q=1时为0,其取值范围为j=0,1,2,…,(2q-1-1);

(4)k的系数,在等式左边为2q,等式右边为2q-1(包括W的幂指数);

(5)等式左边序号中的常数是2的乘方形式,且幂指数比下标q小1,即2q-1;等式右边m对式子序号中的常数都是定值2m-1。

归纳上述规则,写出对于任意正整数m,N=2m的FFT算法如下:

由X0(p)=x(p)(p=0,1,…,N-1)开始:

(1)对q=1,2,…,m,执行(2)~(3)步;

(2)对k=0,1,2,…,(2m-q-1)及j=0,1,2,…,(2q-1-1),执行

地球物理数据处理基础

(3)j,k循环结束;

(4)q循环结束;由Xm(p)(p=0,1,…,N-1)输出原始序列x(p)的频谱X(p)。

在计算机上很容易实现上述FFT算法程序,仅需要三个复数数组,编程步骤如下:

(1)设置复数数组X1(N-1),X2(N-1)和 (数组下界都从0开始);

(2)把样本序列x赋给X1,即X1(k)=x(k)(k=0,1,…,N-1);

(3)计算W,即正变换 反变换

(4)q=1,2,…,m,若q为偶数,执行(6),否则执行第(5)步;

(5)k=0,1,2,…,(2m-q-1)和j=0,1,2,…,(2q-1-1)循环,作

X2(2qk+j)=X1(2q-1k+j)+X1(2q-1k+j+2m-1)

X2(2qk+j+2q-1)=[X1(2q-1k+j)-X1(2q-1k+j+2m-1)]W(2q-1k)

至k,j循环结束;

(6)k=0,1,2,…,(2m-q-1)和j=0,1,2,…,(2q-1-1)循环,作

X1(2qk+j)=X2(2q-1k+j)+X2(2q-1k+j+2m-1)

X1(2qk+j+2q-1)=[X2(2q-1k+j)-X2(2q-1k+j+2m-1)]W(2q-1k)

至k,j循环结束;

(7)q循环结束,若m为偶数,输出X1(j),否则输出X2(j)(j=0,1,…,N-1),即为所求。

void fft()

{

int nn,n1,n2,i,j,k,l,m,s,l1

float ar[1024],ai[1024]// 实部 虚部

float a[2050]

float t1,t2,x,y

float w1,w2,u1,u2,z

float fsin[10]={0.000000,1.000000,0.707107,0.3826834,0.1950903,0.09801713,0.04906767,0.02454123,0.01227154,0.00613588,}// 优化

float fcos[10]={-1.000000,0.000000,0.7071068,0.9238796,0.9807853,0.99518472,0.99879545,0.9996988,0.9999247,0.9999812,}

nn=1024

s=10

n1=nn/2 n2=nn-1

j=1

for(i=1i<=nni++)

{

a[2*i]=ar[i-1]

a[2*i+1]=ai[i-1]

}

for(l=1l<n2l++)

{

if(l<j)

{

t1=a[2*j]

t2=a[2*j+1]

a[2*j]=a[2*l]

a[2*j+1]=a[2*l+1]

a[2*l]=t1

a[2*l+1]=t2

}

k=n1

while (k<j)

{

j=j-k

k=k/2

}

j=j+k

}

for(i=1i<=si++)

{

u1=1

u2=0

m=(1<<i)

k=m>>1

w1=fcos[i-1]

w2=-fsin[i-1]

for(j=1j<=kj++)

{

for(l=jl<nnl=l+m)

{

l1=l+k

t1=a[2*l1]*u1-a[2*l1+1]*u2

t2=a[2*l1]*u2+a[2*l1+1]*u1

a[2*l1]=a[2*l]-t1

a[2*l1+1]=a[2*l+1]-t2

a[2*l]=a[2*l]+t1

a[2*l+1]=a[2*l+1]+t2

}

z=u1*w1-u2*w2

u2=u1*w2+u2*w1

u1=z

}

}

for(i=1i<=nn/2i++)

{

ar[i]=a[2*i+2]/nn

ai[i]=-a[2*i+3]/nn

a[i]=4*sqrt(ar[i]*ar[i]+ai[i]*ai[i]) // 幅值

}

}


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/yw/12398684.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-05-25
下一篇 2023-05-25

发表评论

登录后才能评论

评论列表(0条)

保存