设f(t)=t(1-2t)(1-3t) t∈[0,1]
不妨设 f(t)=t(1-2t)(1-3t)≥a(3t-1) 在[0,1]恒成立,先确定a
因为所求不等式在 x=y=z=1/3时取等
故f(t)=t(1-2t)(1-3t)-a(3t-1)在t=1/3时取极小值,导数为0
故 18t^2-10t+1-3a=0 有一个根为x1=1/3,故 x2=2/9, a=25/81
所以g(t)在[0,2/9],[1/3,1]单调增加,在[2/9,1/3]单调减小
所以g(t)在[0,1]上的最小值为 min{g(0),g(1/3)}=0
所以 x(1-2x)(1-3x)+y(1-2y)(1-3y)+z(1-2z)(1-3z)
=f(x)+f(y)+f(z)
>=25(3x-1)/81+25(3y-1)/81+25(3z-1)/81=0
当且仅当x=y=z=1/3时取等
f(x)=2x^3-9ax^2+12a^2x
a=1,则有f(x)=2x^3-9x^2+12x, f'(x)=6x^2-18x+12=6(x^2-3x+2)=6(x-1)(x-2)
设过原点的切线方程是y=kx切点坐标是(xo,yo),则有k=yo/xo=6(xo^2-3xo+2)
yo=6(xo^3-3xo^2+2xo)=f(xo)=2xo^3-9xo^2+12xo
解得4xo^3-9xo^2=0
xo^2(4xo-9)=0
xo=0(舍), xo=9/4
yo=29^3/64-99^2/16+129/4=27-729/32=135/32
故切点坐标是(9/4,135/32)
故切线方程是y=135/72 x
2f'(x)=6x^2-18ax+12a^2=6(x-a)(x-2a)=0
得x1=a,x2=2a
a>0,则有在x<a,x>2a时,f'(x)>0,函数增,在a<x<2a时,f'(x)<0,函数减
先画一个复坐标系,然后求出传递函数G (x)的零点和极点,标在坐标系中即可,零点为分子为零的点,极点为分母为零的点!
在频域中描述信号特性的一种分析方法,不仅可用于确定性信号,也可用于随机性信号。所谓确定性信号可用既定的时间函数来表示,它在任何时刻的值是确定的;随机信号则不具有这样的特性,它在某一时刻的值是随机的。
因此,随机信号处理只能根据随机过程理论,利用统计方法来进行分析和处理,如经常利用均值、均方值、方差、相关函数、功率谱密度函数等统计量来描述随机过程的特征或随机信号的特性。
扩展资料:
在实际中观测到的数据是有限的。这就需要利用一些估计的方法,根据有限的实测数据估计出整个信号的功率谱。针对不同的要求,如减小谱分析的偏差,减小对噪声的灵敏程度,提高谱分辨率等。已提出许多不同的谱估计方法。
在线性估计方法中,有周期图法,相关法和协方差法;在非线性估计方法中,有最大似然法,最大熵法,自回归滑动平均信号模型法等。谱分析和谱估计仍在研究和发展中。
数字信号处理与模拟信号处理都是信号处理的子集,范畴均属于信号处理,所谓"信号处理",就是要把记录在某种媒体上的信号进行处理,以便抽取出有用信息的过程。
它是对信号进行提取、变换、分析、综合等处理过程的统称。但数字信号处理以及模拟信号处理所处理的对象不一致,因此处理的具体流程也不尽相同,但目的都是为了提取出有用的信息。
参考资料来源:百度百科--数字信号处理
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)