如何求解一个矩阵的特征向量?

如何求解一个矩阵的特征向量?,第1张

特征值代入特征方程,运用初等行变换法,将矩阵化到最简,然后可得到基础解系。求矩阵的全部特征值和特征向量的方法如下:
第一步:计算的特征多项式;
第二步:求出特征方程的全部根,即为的全部特征值;
第三步:对于的每一个特征值,求出齐次线性方程组:的一个基础解系,则可求出属于特征值的全部特征向量。
扩展资料
求特征向量:
设A为n阶矩阵,根据关系式Ax=λx,可写出(λE-A)x=0,继而写出特征多项式|λE-A|=0,可求出矩阵A有n个特征值(包括重特征值)。将求出的特征值λi代入原特征多项式,求解方程(λiE-A)x=0,所求解向量x就是对应的特征值λi的特征向量。
判断矩阵可对角化的充要条件:
矩阵可对角化有两个充要条件:
1、矩阵有n个不同的特征向量;
2、特征向量重根的重数等于基础解系的个数。对于第二个充要条件,则需要出现二重以上的重特征值可验证(一重相当于没有重根)。
若矩阵A可对角化,则其对角矩阵Λ的主对角线元素全部为A的特征值,其余元素全部为0。(一个矩阵的对角阵不唯一,其特征值可以换序,但都存在由对应特征向量顺序组成的可逆矩阵P使P⁻¹AP=Λ)。
求矩阵特征值的方法如下:
任意一个矩阵A可以分解成如下两个矩阵表达的形式:
其中矩阵Q为正交矩阵,矩阵R为上三角矩阵,至于QR分解到底是怎么回事,矩阵Q和矩阵R是怎么得到的,你们还是看矩阵论吧,如果我把这些都介绍了,感觉这篇文章要写崩,或者你可以先认可我是正确的,然后往下看。
由式(22)可知,A1和A2相似,相似矩阵具有相同的特征值,说明A1和A2的特征值相同,我们就可以通过求取A2的特征值来间接求取A1的特征值。

通过求解方程pA(λ)=0来得到。若A是一个n×n矩阵,则pA为n次多项式,因而A最多有n个特征值。反过来,代数基本定理说这个方程刚好有n个根,如果重根也计算在内的话。所有奇数次的多项式必有一个实数根,因此对于奇数n,每个实矩阵至少有一个实特征值。在实矩阵的情形,对于偶数或奇数的n,非实数特征值成共轭对出现。
矩阵的特征向量是矩阵理论上的重要概念之一,它有着广泛的应用。数学上,线性变换的特征向量(本征向量)是一个非简并的向量,其方向在该变换下不变。该向量在此变换下缩放的比例称为其特征值(本征值)。

特征值的几何重次是相应特征空间的维数。有限维向量空间上的一个线性变换的谱是其所有特征值的集合。例如,三维空间中的旋转变换的特征向量是沿着旋转轴的一个向量,相应的特征值是1,相应的特征空间包含所有和该轴平行的向量。该特征空间是一个一维空间,因而特征值1的几何重次是1。特征值1是旋转变换的谱中唯一的实特征值。

求解步骤如下:

第一,求A的特征值及特征向量;

第二,求相似变换矩阵(特征向量矩阵)的逆矩阵;

第三,λ是A的特征值,λ^n是A^n的特征值;

第四,求A^n。

下一步:

判断方阵是否可相似对角化的条件:

(1)充要条件:An可相似对角化的充要条件是:An有n个线性无关的特征向量。 

(2)充要条件的另一种形式:An可相似对角化的充要条件是:An的k重特征值满足n-r(λE-A)=k。

(3)充分条件:如果An的n个特征值两两不同,那么An一定可以相似对角化。 

(4)充分条件:如果An是实对称矩阵,那么An一定可以相似对角化。


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/yw/12671088.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-05-27
下一篇 2023-05-27

发表评论

登录后才能评论

评论列表(0条)

保存