矩阵特征值和特征向量如何求?

矩阵特征值和特征向量如何求?,第1张

1、设x是矩阵A的特征向量,先计算Ax;

2、发现得出的向量是x的某个倍数;

3、计算出倍数,这个倍数就是要求的特征值

求矩阵的全部特征值和特征向量的方法如下:

第一步:计算的特征多项式;

第二步:求出特征方程的全部根,即为的全部特征值;

第三步:对于的每一个特征值,求出齐次线性方程组的一个基础解系,则可求出属于特征值的全部特征向量。

扩展资料:

特征向量的性质:

特征向量对应的特征值是它所乘的那个缩放因子。特征空间就是由所有有着相同特征值的特征向量组成的空间,还包括零向量,但要注意零向量本身不是特征向量。

线性变换的主特征向量是最大特征值对应的特征向量。特征值的几何重次是相应特征空间的维数。有限维向量空间上的一个线性变换的谱是其所有特征值的集合。

例如,三维空间中的旋转变换的特征向量是沿着旋转轴的一个向量,相应的特征值是1,相应的特征空间包含所有和该轴平行的向量。该特征空间是一个一维空间,因而特征值1的几何重次是1。特征值1是旋转变换的谱中唯一的实特征值。

求特征值的传统方法是令特征多项式| AE-A| = 0,求出A的特征值,对于A的任一特征值h,特征方程( aE- A)X= 0的所有非零解X即为矩阵A的属于特征值N的特征向量两者的计算是分割的,一个是计算行列式,另一个是解齐次线性方程组,且计算量都较大。使用matlab可以方便的计算任何复杂的方阵的特征值和特征向量:

1、首先需要知道计算矩阵的特征值和特征向量要用eig函数,可以在命令行窗口中输入help eig,查看一下eig函数的用法,如下图所示:

2、在命令行窗口中输入a=[1 2 3;2 4 5;7 8 9],按回车键之后,输入[x,y]=eig(a),如下图所示:

3、按回车键之后,得到了x,y的值,其中x的每一列值表示矩阵a的一个特征向量,这里有3个特征向量,y的对角元素值代表a矩阵的特征值,如下图所示:

4、步如果我们要取y的对角元素值,可以使用diag(y),如下图所示:

5、按回车键之后,可以看到已经取出y的对角线元素值,也就是a矩阵的特征值,如下图所示:

6、第六步我们也可以在命令行窗口help diag,可以看到关于diag函数的用法,如下图所示:

注意事项:

特征值和特征向量的应用:

1、可以用在研究物理、化学领域的微分方程、连续的或离散的动力系统中。例如,在力学中,惯量的特征向量定义了刚体的主轴。惯量是决定刚体围绕质心转动的关键数据;

2、数学生态学家用来预测原始森林遭到何种程度的砍伐,会造成猫头鹰的种群灭亡;

3、著名的图像处理中的PCA方法,选取特征值最高的k个特征向量来表示一个矩阵,从而达到降维分析+特征显示的方法,还有图像压缩的K-L变换。再比如很多人脸识别,数据流模式挖掘分析等方面。

求矩阵的全部特征值和特征向量的方法如下:

第一步:计算的特征多项式;

第二步:求出特征方程的全部根,即为的全部特征值;

第三步:对于的每一个特征值,求出齐次线性方程组:

的一个基础解系,则的属于特征值的全部特征向量是其中是不全为零的任意实数。

若是的属于的特征向量,则也是对应于的特征向量,因而特征向量不能由特征值惟一确定.反之,不同特征值对应的特征向量不会相等,亦即一个特征向量只能属于一个特征值。

扩展资料

求特征向量

设A为n阶矩阵,根据关系式Ax=λx,可写出(λE-A)x=0,继而写出特征多项式|λE-A|=0,可求出矩阵A有n个特征值(包括重特征值)。将求出的特征值λi代入原特征多项式,求解方程(λiE-A)x=0,所求解向量x就是对应的特征值λi的特征向量。

判断相似矩阵的必要条件

设有n阶矩阵A和B,若A和B相似(A∽B),则有:

1、A的特征值与B的特征值相同——λ(A)=λ(B),特别地,λ(A)=λ(Λ),Λ为A的对角矩阵;

2、A的特征多项式与B的特征多项式相同——|λE-A|=|λE-B|。

参考资料来源:百度百科-特征值

特征值与特征向量之间关系:
1、属于不同特征值的特征向量一定线性无关。
2、相似矩阵有相同的特征多项式,因而有相同的特征值。
3、设x是矩阵a的属于特征值1的特征向量,且a~b,即存在满秩矩阵p使b=p(-1)ap,则y=p(-1)x是矩阵b的属于特征值1的特征向量。
4、n阶矩阵与对角矩阵相似的充分必要条件是:矩阵有n个线性无关的分别属于特征值1,2,3的特征向量(1,2,3中可以有相同的值)。
特征值是线性代数中的一个重要概念。在数学、物理学、化学、计算机等领域有着广泛的应用。设
A
是n阶方阵,如果存在数m和非零n维列向量 x,使得
Ax=mx
成立。

扩展资料:


求矩阵的全部特征值和特征向量的方法如下:
第一步:计算的特征多项式;
第二步:求出特征方程的全部根,即为的全部特征值;
第三步:对于的每一个特征值,求出齐次线性方程组。
若是的属于的特征向量,则也是对应于的特征向量,因而特征向量不能由特征值惟一确定.反之,不同特征值对应的特征向量不会相等,亦即一个特征向量只能属于一个特征值。
特征空间就是由所有有着相同特征值的特征向量组成的空间,还包括零向量,但要注意零向量本身不是特征向量。
线性变换的主特征向量是最大特征值对应的特征向量。特征值的几何重次是相应特征空间的维数。有限维向量空间上的一个线性变换的谱是其所有特征值的集合。
参考资料来源:搜狗百科——特征值
参考资料来源:搜狗百科——特征向量


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/yw/12709280.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-05-27
下一篇 2023-05-27

发表评论

登录后才能评论

评论列表(0条)

保存