特征向量怎么求

特征向量怎么求,第1张

从定义出发,Ax=cx:A为矩阵,c为特征值,x为特征向量。 

矩阵A乘以x表示,对向量x进行一次转换(旋转或拉伸)(是一种线性转换),而该转换的效果为常数c乘以向量x(即只进行拉伸)。

通常求特征特征向量即为求出该矩阵能使哪些向量(当然是特征向量)只发生拉伸,使其发生拉伸的程度如何(特征值大小)。

数值计算的原则:

在实践中,大型矩阵的特征值无法通过特征多项式计算,计算该多项式本身相当费资源,而精确的“符号式”的根对于高次的多项式来说很难计算和表达:阿贝尔-鲁费尼定理显示高次(5次或更高)多项式的根无法用n次方根来简单表达。

对于估算多项式的根的有效算法是有的,但特征值的小误差可以导致特征向量的巨大误差。求特征多项式的零点,即特征值的一般算法,是迭代法。最简单的方法是幂法:取一个随机向量v,然后计算一系列单位向量。

1、设x是矩阵A的特征向量,先计算Ax;

2、发现得出的向量是x的某个倍数;

3、计算出倍数,这个倍数就是要求的特征值。

求矩阵的全部特征值和特征向量的方法如下:

第一步:计算的特征多项式;

第二步:求出特征方程的全部根,即为的全部特征值;

第三步:对于的每一个特征值,求出齐次线性方程组的一个基础解系,则可求出属于特征值的全部特征向量。

扩展资料:

特征向量的性质:

特征向量对应的特征值是它所乘的那个缩放因子。特征空间就是由所有有着相同特征值的特征向量组成的空间,还包括零向量,但要注意零向量本身不是特征向量。

线性变换的主特征向量是最大特征值对应的特征向量。特征值的几何重次是相应特征空间的维数。有限维向量空间上的一个线性变换的谱是其所有特征值的集合。

例如,三维空间中的旋转变换的特征向量是沿着旋转轴的一个向量,相应的特征值是1,相应的特征空间包含所有和该轴平行的向量。该特征空间是一个一维空间,因而特征值1的几何重次是1。特征值1是旋转变换的谱中唯一的实特征值。

求n阶矩阵A的特征值的基本方法:

根据定义可改写为关系式

E为单位矩阵,要求向量x具有非零解,即求齐次线性方程组

有非零解的值λ,即要求行列式

解次行列式获得的λ值即为矩阵A的特征值。将此值回代入原式求得相应的x,即为输入这个行列式的特征向量。

扩展资料

求矩阵的全部特征值和特征向量的方法:

1、计算的特征多项式;

2、求出特征方程的全部根,即为的全部特征值;

3、对于的每一个特征值,求出齐次线性方程组的一个基础解系,则的属于特征值的全部特征向量是其中是不全为零的任意实数。


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/yw/12726967.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-05-27
下一篇 2023-05-27

发表评论

登录后才能评论

评论列表(0条)

保存