把函数f(x)=xe^x展开成x的幂级数

把函数f(x)=xe^x展开成x的幂级数,第1张

基本初等函数e^x展开成x的幂级数

e^x=1+x+x²/2!+x³/3!++x^n/n!+

函数f(x)=xe^x=x(1+x+x²/2!+x³/3!++x^n/n!+)

=x+x²+x³/2!++x^(n+1)/n!+

扩展资料

幂函数的性质:

一、当α为整数时,α的正负性和奇偶性决定了函数的单调性:

1、当α为正奇数时,图像在定义域为R内单调递增。

2、当α为正偶数时,图像在定义域为第二象限内单调递减,在第一象限内单调递增。

3、当α为负奇数时,图像在第一三象限各象限内单调递减(但不能说在定义域R内单调递减)。

4、当α为负偶数时,图像在第二象限上单调递增,在第一象限内单调递减。

二、当α为分数时,α的正负性和分母的奇偶性决定了函数的单调性:

1、当α>0,分母为偶数时,函数在第一象限内单调递增。

2、当α>0,分母为奇数时,若分子为偶数,函数在第一象限内单调递增,在第二象限单调递减;若分子为奇数,函数在第一、三象限各象限内单调递增。

arcsinx 展开成x的幂级数,先求导数的幂级数,再逐项积分,得到arcsinx的幂级数。

如图所示:

幂级数,是数学分析当中重要概念之一,是指在级数的每一项均为与级数项序号n相对应的以常数倍的(x-a)的n次方(n是从0开始计数的整数,a为常数)。幂级数是数学分析中的重要概念,被作为基础内容应用到了实变函数、复变函数等众多领域当中。

扩展资料

1、幂级数展开公式是公比为q=x的等比级数求和公式的反过来应用,可以直接使用,没有必要写出具体过程, 如果一定要写,就写在下面,略有点麻烦,其中第步要用到收敛的等比级数的余项级数,仍然是等比级数和,这是中学知识

2、f(x)=1/(1-x),f'(x)=1/(1-x)^2,f''(x)=2!/(1-x)^3,f'''(x)=3!/(1-x)^4,……, [f(x)](n阶导)=n!/(1-x)^(n+1), ②f(0)=1,f'(0)=1,f''(0)=2!,f‘''(0)=3。


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/yw/12971876.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-05-29
下一篇 2023-05-29

发表评论

登录后才能评论

评论列表(0条)

保存