典型相关分析的相关应用

典型相关分析的相关应用,第1张

典型相关分析的用途很广。在实际分析问题中,当我们面临两组变量数据,并希望研究两组变量之间的关系时,就要用到典型相关分析。 例如,为了研究扩张性财政政策实施以后对宏观经济发展的影响,就需要考察有关财政政策的一系列指标如财政支出总额的增长率、财政赤字增长率、国债发行额的增长率、税率降低率等与经济发展的一系列指标如国内生产总值增长率、就业增长率、物价上涨率等两组变量之间的相关程度。

又如,为了研究宏观经济走势与股票市场走势之间的关系,就需要考察各种宏观经济指标如经济增长率、失业率、物价指数、进出口增长率等与各种反映股票市场状况的指标如股票价格指数、股票市场融资金额等两组变量之间的相关关系。再如,工厂要考察所使用的原料的质量对所生产的产品的质量的影响,就需要对所生产产品的各种质量指标与所使用的原料的各种质量指标之间的相关关系进行测度。

又如,在分析评估某种经济投入与产出系统时,研究投入和产出情况之间的联系时,投入情况面可以从人力、物力等多个方面反映,产出情况也可以从产值、利税等方面反映。

再如在分析影响居民消费因素时,我们可以将劳动者报酬、家庭经营收入、转移性收入等变量构成反映居民收入的变量组,而将食品支出、医疗保健支出、交通和通讯支出等变量构成反映居民支出情况的变量组,然后通过研究两变量组之间关系来分析影响居民消费因素情况。

典型相关分析  先将较多变量转化为少数几个典型变量,再通过其间的典型相关系数来综合描述两组多元随机变量之间关系的统计方法。设x是p元随机变量,y是q元随机变量,如何描述它们之间的相关程度?当然可逐一计算x的p个分量和y的q个分量之间的相关系数(p×q个), 但这样既繁琐又不能反映事物的本质。如果运用典型相关分析,其基本程序是,从两组变量各自的线性函数中各抽取一个组成一对,它们应是相关系数达到最大值的一对,称为第1对典型变量,类似地还可以求出第2对、第3对、……,这些成对变量之间互不相关,各对典型变量的相关系数称为典型相关系数。所得到的典型相关系数的数目不超过原两组变量中任何一组变量的数目。

典型相关分析有助于综合地描述两组变量之间的典型的相关关系。其条件是,两组变量都是连续变量,其资料都必须服从多元正态分布。

以上几种多元分析方法各有优点和局限性。每一种方法都有它特定的假设、条件和数据要求,例如正态性、线性和同方差等。因此在应用多元分析方法时,应在研究计划阶段确定理论框架,以决定收集何种数据、怎样收集和如何分析数据资料。

SPSS执行典型相关性分析出现错误主要 原因如下:

1. 文件-新建-语法-输入宏程序

(例如:INCLUDE 'C:\Program Files\SPSSInc\Canonical correlation.sps'.

CANCORR SET1=X1 X2 X3/SET2=Y1 Y2.)需要注意的是末尾的点表示程序结束,不能省略。

2.需要注意的是末尾的点表示程序结束,不能省略;路径选择很重要,首先安装Canonical correlation程序,其次运行时选择正确的路径;INCLUDE为典型相关分析宏程序,CANCORR为组变量名称调用;

你进入SPSS的安装盘,去搜索“Canonical correlation.sps”,右键,属性,就能找到它的路径。

我的机器里面有两个:

C:\Program Files\IBM\SPSS\Statistics\20\Samples\English\Canonical correlation.sps

C:\Program Files\IBM\SPSS\Statistics\20\Samples\Simplified Chinese\Canonical correlation.sps


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/yw/7756148.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-04-09
下一篇 2023-04-09

发表评论

登录后才能评论

评论列表(0条)

保存