双曲线的公式是什么?

双曲线的公式是什么?,第1张

标准方程为:

1、焦点在X轴上时为: (a>0,b>0)

2、焦点在Y 轴上时为: (a>0,b>0)

一般的,双曲线(希腊语“ὑπερβολή”,字面意思是“超过”或“超出”前友)是定义为平面交截直角圆锥面的两半的一类圆锥曲线。

它还可以定义为与两个固定的点(叫做焦点)的距离差是常数的点的轨迹。这个固定的距离差是a的两倍,这里的a是从双曲线的中心到双曲线最近的分支的顶点的距离。

a还叫做双曲线的实半轴。焦点位于贯穿轴上,它们的中间点叫做中心,中心一般位于原点处。

扩展资料:

特征介绍

分支

可以从图像中看出,双曲线有两个分支。当焦点在x轴上时,为左轴与右轴;当焦点在y轴上时,为上轴与下轴。

焦点

在定义1中提到的两个定点称为该双曲线的焦点,定义2中提到的一给定点也是双曲线的焦点。双曲线有两个焦点。焦点的横(纵)坐标满足c²=a²+b²。

准线

在定义2中提到的给定直线称为该双曲线的准线。

离心率

在定义2中提到的到给定点与给定直线的距离之比,称为该双曲线的离心率。

离心率

双曲线有两个焦猜丛点,两条准线。(注意:尽管定义2中只提到了一个焦点和一条准线,但是给定同侧的一个焦点,一条准线以及离心率可以根据定义2同时得到双曲线的两支,而两侧的焦点,准线和相同离心率得到的双曲线是相同的。)

顶点

双曲线和它的对称轴有两个交点,它们叫做双曲线的顶点。

实轴

两顶点之间的距离称为双曲线的实轴,实轴长的一半称为实半轴。

虚轴

在标准方程中令x=0,得y²=-b²,该方程无实根,为慧兆槐便于作图,在y轴上画出B1(0,b)和B2(0,-b),以B1B2为虚轴。

渐近线

双曲线有两条渐近线。渐近线和双曲线不相交。

渐近线的方程求法是:将右边的常数设为0,即可用解二元二次的方法求出渐近线的解,例如:将1替换为0,得,则双曲线的渐近线为  。

一般地我们把直线叫做双曲线(焦点在X轴上)的渐近线(asymptotetothehyperbola)。

焦点在y轴上的双曲线的渐近线为  。顶点连线斜率 双曲线y上一点与两顶点连线的斜率之积为。

参考资料:百度百科---双曲线

由双曲线的定义可知模誉,AF2-AF1=2a,BF2-BF1=2a,

∴△碰兆ABF2的周长=AF2+BF2+AB=(AF1+2a)+( BF1+2a) +AB=2AB+4a=2m+4a

又0<θ≤π/2,∴a=sinθ≤1

△笑码租ABF2的周长=2m+4 sinθ≤2m+4,

即△ABF2的周长的最大值为2m+4,(m>0).


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/yw/8204839.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-04-14
下一篇 2023-04-14

发表评论

登录后才能评论

评论列表(0条)

保存