第五章 神经网络

第五章 神经网络,第1张

神经网络神经网络是由具有适应性的简单单元组成的广泛并行互连的网络,它的组织能够模拟生物神经系统对真实世界物体所作出的交互反应。

神经网络中最基本的成分便是 神经元模型

M-P神经元模型:

感知机由两层神经元组成,分别为输入层、输出层。

以下是具体过程:

多层神经网络的拓扑结构如图:

如上图可知,多层网络由输入层、隐含层和输出层组成,顶层是输出层,底层是输入层,中间的便是隐含层。隐含层与输出层都具有功能神经元。

多层前馈神经网络的结构需要满足:

1、每层神经元必须与下一层完全互连

2、神经元之间不存在同层连接

3、神经元不可跨层连接

只需包含一个足够多神经元的隐层,就能以任意精度逼近任意复杂度的连续函数

BP神经网络由于学习能力太强大比较荣誉造成过拟合问题,故有两种策略来减缓过拟合的问题:

1、早停:将数据分成训练集和验证集,训练集学习,验证集评估性能,在训练过程中,若训练集的累积误差降低,而验证集的累积误差提高,则终止训练;

2、引入正则化:其基本思想是在误差目标函数中增加一个用于描述网络复杂程度的部分,有如连接权和阈值的平方和:

其中λ∈(0,1)用于对累积经验误差与网络复杂度这两项进行折中,常通过交叉验证法来估计。

神经网络的训练过程可看作一个参数寻优的过程,即寻找到适当的参数使得E最小。于是我们时常会谈及“全局最小”和“局部最小”。

1、全局最小:即全局最小解,在参数空间中,所有其他点的误差函数值均大于该点;

2、局部最小:即局部最小解,在参数空间中,其邻近的点的误差函数值均大于该点。

我们要达到局部极小点,很容易,只要满足梯度为零的点便是了,局部极小点可以有多个,但全局最小点只有一个。显然,我们追求的是全局最小,而非局部极小,于是人们通常采用以下策略来试图“跳出”局部极小,使其接近全局最小:

1、以多组不同参数值初始化多个神经网络,按标准方法训练,在迭代停止后,取其中误差最小的解作为最终参数;

2、使用随机梯度下降(在计算梯度时加入了随机因素),使得在局部最小时,计算的梯度仍可能不为0,从而可能跳出局部极小,继续进行迭代;

3、“模拟退火”技术,在每一步都以一定的概率接受比当前解更差的结果,但接受“次优解”的概率要随着迭代进行,时间推移而逐渐减低以确保算法的稳定。

1、RBF网络

单隐层前馈神经网络 ,使用径向基函数作为隐层神经元激活函数,输出层是对隐层神经元输出的线性组合。RBF网络可表示为:

2、ART网络

竞争型学习 (神经网络中一种常用的 无监督学习 策略),由 比较层、识别层、识别阈值和重置模块 组成。接收到比较层的输入信号后,识别层神经元相互竞争以产生获胜神经元,最简单的方式就是计算输入向量与每个识别层神经元所对应的模式类代表向量间的距离,距离小者获胜。若获胜神经元对应的代表向量与输入向量间 相似度大于识别阈值 ,则将输入样本归为该代表向量所属类别,网络 连接权 也会进行 更新 以保证后面接收到相似的输入样本时该模式类会计算出更大的相似度,使得这样的样本能够归于一类;如果 相似度不大于识别阈值 ,则 重置模块 会在 识别层 加一个神经元,其 代表向量 设置 为当前 输入向量

3、SOM网络

竞争型学习的无监督神经网络 ,将高维输入数据映射到低维空间(通常是二维),且保持输入数据在高维空间的拓扑结构。

4、级联相关网络

结构自适应网络

5、Elman网络

递归神经网络

6、Boltzmann机

基于能量的模型,其神经元分为显层与隐层,显层用于数据输入输出,隐层被理解为数据的内在表达。其神经元皆为布尔型,1为激活,0为抑制。

理论上,参数越多的模型其复杂程度越高,能完成更加复杂的学习任务。但是复杂模型的训练效率低下,容易过拟合。但由于大数据时代、云计算,计算能力大幅提升缓解了训练效率低下,而训练数据的增加则可以降低过拟合风险。

于是如何增加模型的复杂程度呢?

1、增加隐层数;

2、增加隐层神经元数

如何有效训练多隐层神经网络?

1、无监督逐层训练:每次训练一层隐节点,把上一层隐节点的输出当作输入来训练,本层隐结点训练好后,输出再作为下一层的输入来训练,这称为预训练,全部预训练完成后,再对整个网络进行微调。“预训练+微调”即把大量的参数进行分组,先找出每组较好的设置,再基于这些局部最优的结果来训练全局最优;

2、权共享:令同一层神经元使用完全相同的连接权,典型的例子是卷积神经网络。这样做可以大大减少需要训练的参数数目。

深度学习 可理解为一种特征学习或者表示学习,是通过 多层处理 ,逐渐将初始的 低层特征表示 转化为 高层特征表示 后,用 简单模型 即可完成复杂的分类等 学习任务

传统文本处理任务的方法中一般将TF-IDF向量作为特征输入。显而易见,这样的表示实际上丢失了输入的文本序列中每个单词的顺序。在神经网络的建模过程中,一般的前馈神经网络,如卷积神经网络,通常接受一个定长的向量作为输入。卷积神经网络对文本数据建模时,输入变长的字符串或者单词串,然后通过滑动窗口加池化的方式将原先的输入转换成一个固定长度的向量表示,这样做可以捕捉到原文本中的一些局部特征,但是两个单词之间的长距离依赖关系还是很难被学习到。

循环神经网络却能很好地处理文本数据变长并且有序的输入序列。它模拟了人阅读一篇文章的顺序,从前到后阅读文章中的每一个单词,将前面阅读到的有用信息编码到状态变量中去,从而拥有了一定的记忆能力,可以更好地理解之后的文本。

其网络结构如下图所示:

由图可见,t是时刻,x是输入层,s是隐藏层,o是输出层,矩阵W就是隐藏层上一次的值作为这一次的输入的权重。

如果反复把式 2 带入到式 1,将得到:

其中f和g为激活函数,U为输入层到隐含层的权重矩阵,W为隐含层从上一时刻到下一时刻状态转移的权重矩阵。在文本分类任务中,f可以选取Tanh函数或者ReLU函数,g可以采用Softmax函数。

通过最小化损失误差(即输出的y与真实类别之间的距离),我们可以不断训练网络,使得得到的循环神经网络可以准确地预测文本所属的类别,达到分类目的。相比于卷积神经网络等前馈神经网络,循环神经网络由于具备对序列顺序信息的刻画能力,往往能得到更准确的结果。

RNN的训练算法为:BPTT

BPTT的基本原理和BP算法是一样的,同样是三步:

1前向计算每个神经元的输出值;

2反向计算每个神经元的误差项值,它是误差函数E对神经元j的加权输入的偏导数;

3计算每个权重的梯度。

最后再用随机梯度下降算法更新权重。

具体参考: https://wwwjianshucom/p/39a99c88a565

最后由链式法则得到下面以雅可比矩阵来表达的每个权重的梯度:

由于预测的误差是沿着神经网络的每一层反向传播的,因此当雅克比矩阵的最大特征值大于1时,随着离输出越来越远,每层的梯度大小会呈指数增长,导致梯度爆炸;反之,若雅克比矩阵的最大特征值小于1,梯度的大小会呈指数缩小,产生梯度消失。对于普通的前馈网络来说,梯度消失意味着无法通过加深网络层次来改善神经网络的预测效果,因为无论如何加深网络,只有靠近输出的若干层才真正起到学习的作用。 这使得循环神经网络模型很难学习到输入序列中的长距离依赖关系

关于RNN梯度下降的详细推导可以参考: https://zhuanlanzhihucom/p/44163528

梯度爆炸的问题可以通过梯度裁剪来缓解,即当梯度的范式大于某个给定值时,对梯度进行等比收缩。而梯度消失问题相对比较棘手,需要对模型本身进行改进。深度残差网络是对前馈神经网络的改进,通过残差学习的方式缓解了梯度消失的现象,从而使得我们能够学习到更深层的网络表示;而对于循环神经网络来说,长短时记忆模型及其变种门控循环单元等模型通过加入门控机制,很大程度上弥补了梯度消失所带来的损失。

LSTM的网络机构图如下所示:

与传统的循环神经网络相比,LSTM仍然是基于xt和ht−1来计算ht,只不过对内部的结构进行了更加精心的设计,加入了输入门it 、遗忘门ft以及输出门ot三个门和一个内部记忆单元ct。输入门控制当前计算的新状态以多大程度更新到记忆单元中;遗忘门控制前一步记忆单元中的信息有多大程度被遗忘掉;输出门控制当前的输出有多大程度上取决于当前的记忆单元。

在经典的LSTM模型中,第t层的更新计算公式为

其中it是通过输入xt和上一步的隐含层输出ht−1进行线性变换,再经过激活函数σ得到的。输入门it的结果是向量,其中每个元素是0到1之间的实数,用于控制各维度流过阀门的信息量;Wi 、Ui两个矩阵和向量bi为输入门的参数,是在训练过程中需要学习得到的。遗忘门ft和输出门ot的计算方式与输入门类似,它们有各自的参数W、U和b。与传统的循环神经网络不同的是,从上一个记忆单元的状态ct−1到当前的状态ct的转移不一定完全取决于激活函数计算得到的状态,还由输入门和遗忘门来共同控制。

在一个训练好的网络中,当输入的序列中没有重要信息时,LSTM的遗忘门的值接近于1,输入门的值接近于0,此时过去的记忆会被保存,从而实现了长期记忆功能;当输入的序列中出现了重要的信息时,LSTM应当把其存入记忆中,此时其输入门的值会接近于1;当输入的序列中出现了重要信息,且该信息意味着之前的记忆不再重要时,输入门的值接近1,而遗忘门的值接近于0,这样旧的记忆被遗忘,新的重要信息被记忆。经过这样的设计,整个网络更容易学习到序列之间的长期依赖。

GRU是在LSTM上进行简化而得到的,GRU的网络结构如下所示:

Zt代表更新门,更新门的作用类似于LSTM中的遗忘门和输入门,它能决定要丢弃哪些信息和要添加哪些新信息。

Rt代表重置门,重置门用于决定丢弃先前信息的程度。

要注意的是,h只是一个变量,因此在每个时刻,包括最后的线性组合,h都是在用以前的自己和当前的备选答案更新自己。举例来说,这一个变量好比一杯酒,每次我们要把一部分酒倒出去,并把倒出去的酒和新加入的原料混合,然后在倒回来,这里的reset控制的就是要倒出去的,并且混合好之后再倒回来的酒的比例,而update控制的则是用多大的比例混合新原料和倒出来的之前调制好的酒。同理,也可以以此理解LSTM,LSTM的遗忘门功能上和reset相似,而输入门与update相似,不同之处在于LSTM还控制了当前状态的exposure,也就是输出门的功能,这是GRU所没有的。

1百面机器学习

2 https://zhuanlanzhihucom/p/45649187

3 https://wwwjianshucom/p/39a99c88a565

从广义上说深度学习的网络结构也是多层神经网络的一种。传统意义上的多层神经网络是只有输入层、隐藏层、输出层。其中隐藏层的层数根据需要而定,没有明确的理论推导来说明到底多少层合适。而深度学习中最著名的卷积神经网络CNN,在原来多层神经网络的基础上,加入了特征学习部分,这部分是模仿人脑对信号处理上的分级的。具体 *** 作就是在原来的全连接的层前面加入了部分连接的卷积层与降维层,而且加入的是一个层级。输入层 - 卷积层 -降维层 -卷积层 - 降维层 -- -- 隐藏层 -输出层简单来说,原来多层神经网络做的步骤是:特征映射到值。特征是人工挑选。深度学习做的步骤是 信号->特征->值。 特征是由网络自己选择。

从广义上来说,NN(或是更美的DNN)确实可以认为包含了CNN、RNN这些具体的变种形式。在实际应用中,所谓的深度神经网络DNN,往往融合了多种已知的结构,包括卷积层或是LSTM单元。但是就题主的意思来看,这里的DNN应该特指全连接的神经元结构,并不包含卷积单元或是时间上的关联。

因此,题主一定要将DNN、CNN、RNN等进行对比,也未尝不可。其实,如果我们顺着神经网络技术发展的脉络,就很容易弄清这几种网络结构发明的初衷,和他们之间本质的区别。神经网络技术起源于上世纪五、六十年代,当时叫感知机(perceptron),拥有输入层、输出层和一个隐含层。输入的特征向量通过隐含层变换达到输出层,在输出层得到分类结果。

早期感知机的推动者是Rosenblatt。(扯一个不相关的:由于计算技术的落后,当时感知器传输函数是用线拉动变阻器改变电阻的方法机械实现的,脑补一下科学家们扯着密密麻麻的导线的样子…)但是,Rosenblatt的单层感知机有一个严重得不能再严重的问题,即它对稍复杂一些的函数都无能为力(比如最为典型的“异或” *** 作)。

连异或都不能拟合,你还能指望这货有什么实际用途么。随着数学的发展,这个缺点直到上世纪八十年代才被Rumelhart、Williams、Hinton、LeCun等人(反正就是一票大牛)发明的多层感知机(multilayer perceptron)克服。多层感知机,顾名思义,就是有多个隐含层的感知机。

欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/zaji/12188853.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-05-21
下一篇 2023-05-21

发表评论

登录后才能评论

评论列表(0条)

保存