好的,按照T先生的评论,似乎没有 直接的
方法可以解决这个问题。但是,对于我要执行的 *** 作,有一种解决方法(突出显示表面上的特定点)。使用
matplotlib.patches和
mpl_toolkits.mplot3d.art3d模块,可以在图形上的适当位置绘制一个圆,而这似乎不受同一问题的影响。
修改后的代码为:
import pandas as pdimport matplotlibimport matplotlib.pyplot as pltfrom mpl_toolkits.mplot3d import Axes3D, art3dfrom matplotlib.patches import Circleimport numpy as npdf = pd.Dataframe({10: {10: 1,15: 1,20: 1,25: 1,30: 1,35: 1,40: 1,45: 1,50: 1,55: 1,60: 1,65: 1,70: 1,75: 1,80: 1,85: 1,90: 1}, 15: {10: 4,15: 1,20: 1,25: 1,30: 1,35: 1,40: 1,45: 1,50: 1,55: 1,60: 1,65: 1,70: 1,75: 1,80: 1,85: 1,90: 1}, 20: {10: 6,15: 3,20: 1,25: 1,30: 1,35: 1,40: 1,45: 1,50: 1,55: 1,60: 1,65: 1,70: 1,75: 1,80: 1,85: 1,90: 1}, 25: {10: 7,15: 5,20: 3,25: 1,30: 1,35: 1,40: 1,45: 1,50: 1,55: 1,60: 1,65: 1,70: 1,75: 1,80: 1,85: 1,90: 1}, 30: {10: 9,15: 6,20: 4,25: 3,30: 1,35: 1,40: 1,45: 1,50: 1,55: 1,60: 1,65: 1,70: 1,75: 1,80: 1,85: 1,90: 1}, 35: {10: 10,15: 7,20: 5,25: 4,30: 2,35: 1,40: 1,45: 1,50: 1,55: 1,60: 1,65: 1,70: 1,75: 1,80: 1,85: 1,90: 1}, 40: {10: 11,15: 8,20: 6,25: 4,30: 3,35: 2,40: 1,45: 1,50: 1,55: 1,60: 1,65: 1,70: 1,75: 1,80: 1,85: 1,90: 1}, 45: {10: 12,15: 9,20: 7,25: 5,30: 4,35: 3,40: 2,45: 1,50: 1,55: 1,60: 1,65: 1,70: 1,75: 1,80: 1,85: 1,90: 1}, 50: {10: 13,15: 9,20: 7,25: 6,30: 5,35: 4,40: 3,45: 2,50: 1,55: 1,60: 1,65: 1,70: 1,75: 1,80: 1,85: 1,90: 1}, 55: {10: 14,15: 10,20: 8,25: 7,30: 5,35: 4,40: 3,45: 3,50: 2,55: 1,60: 1,65: 1,70: 1,75: 1,80: 1,85: 1,90: 1}, 60: {10: 15,15: 11,20: 9,25: 7,30: 6,35: 5,40: 4,45: 3,50: 3,55: 2,60: 1,65: 1,70: 1,75: 1,80: 1,85: 1,90: 1}, 65: {10: 16,15: 12,20: 9,25: 8,30: 6,35: 5,40: 5,45: 4,50: 3,55: 2,60: 2,65: 1,70: 1,75: 1,80: 1,85: 1,90: 1}, 70: {10: 17,15: 12,20: 10,25: 8,30: 7,35: 6,40: 5,45: 4,50: 4,55: 3,60: 2,65: 2,70: 1,75: 1,80: 1,85: 1,90: 1}, 75: {10: 18,15: 13,20: 10,25: 9,30: 7,35: 6,40: 5,45: 5,50: 4,55: 3,60: 3,65: 2,70: 2,75: 1,80: 1,85: 1,90: 1}, 80: {10: 19,15: 14,20: 11,25: 9,30: 8,35: 7,40: 6,45: 5,50: 4,55: 4,60: 3,65: 3,70: 2,75: 2,80: 1,85: 1,90: 1}, 85: {10: 21,15: 14,20: 11,25: 10,30: 8,35: 7,40: 6,45: 6,50: 5,55: 4,60: 4,65: 3,70: 3,75: 2,80: 2,85: 1,90: 1}, 90: {10: 23,15: 15,20: 12,25: 10,30: 9,35: 8,40: 7,45: 6,50: 5,55: 5,60: 4,65: 3,70: 3,75: 3,80: 2,85: 2,90: 1}})xv, yv = np.meshgrid(df.index, df.columns)ma = np.nanmax(df.values)norm = matplotlib.colors.Normalize(vmin = 0, vmax = ma, clip = True)fig = plt.figure(1)ax = Axes3D(fig)surf = ax.plot_surface(yv,xv,df, cmap='viridis_r', linewidth=0.3, alpha = 0.8, edgecolor = 'k', norm=norm)p = Circle((25, 35), 3, ec='k', fc="none")ax.add_patch(p)art3d.pathpatch_2d_to_3d(p, z=4, zdir="z")plt.show()
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)