切割线定理

切割线定理,第1张

切割线定理从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项.是圆幂定理的一种。

割线定理证明:

设ABP是⊙O的一条割线,PT是⊙O的一条切线,切点为T,则PT²=PA·PB,连接AT, BT

∵∠PTB=∠PAT(弦切角定理)

切割线定理的证明

∠APT=∠TPA(公共角)

∴△PBT∽△PTA(两角对应相等,两三角形相似)

则PB:PT=PT:AP

即:PT²=PB·PA(即切割线定理)。

切割线定理公式:PT²=PA·PB。证明:从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项。切割线定理的推论:从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等。

圆是一种几何图形。根据定义,通常用圆规来画圆。同圆内圆的直径、半径的长度永远相同,圆有无数条半径和无数条直径。圆是轴对称、中心对称图形。对称轴是直径所在的直线。同时,圆又是“正无限多边形”,而“无限”只是一个概念。

当多边形的边数越多时,其形状、周长、面积就都越接近于圆。所以,世界上没有真正的圆,圆实际上只是一种概念性的图形。

切线的判定和性质

切线的判定定理 经过半径的外端并且垂直于这条半径的直线是圆的切线

几何语言:∵l ⊥OA,点A在⊙O上

∴直线l是⊙O的切线(切线判定定理)

切线的性质定理 圆的切线垂直于经过切点半径

几何语言:∵OA是⊙O的半径,直线l切⊙O于点A

∴l ⊥OA(切线性质定理)

推论1 经过圆心且垂直于切线的直径必经过切点

推论2 经过切点且垂直于切线的直线必经过圆心

切线长定理

定理 从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角

几何语言:∵弦PB、PD切⊙O于A、C两点

∴PA=PC,∠APO=∠CPO(切线长定理)

弦切角

弦切角定理 弦切角等于它所夹的弧对的圆周角

几何语言:∵∠BCN所夹的是 ,∠A所对的是

∴∠BCN=∠A

推论 如果两个弦切角所夹的弧相等,那么这两个弦切角也相等

几何语言:∵∠BCN所夹的是 ,∠ACM所对的是 ,=

∴∠BCN=∠ACM

切线长定理:从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角.

4.弦切角概念:顶点在圆上,一边和圆相交、另一边和圆相切的角叫做弦切角.它是继圆心角、圆周角之后第三种与圆有关的角.这种角必须满足三个条件:

(1)顶点在圆上,即角的顶点是圆的一条切线的切点;

(2)角的一边和圆相交,即角的一边是过切点的一条弦所在的射线;

(3)角的另一边和圆相切,即角的另一边是切线上以切点为端点的一条射线.

它们是判断一个角是否为弦切角的标准,三者缺一不可,比如下图中 均不是弦切角.

(4)弦切角可以认为是圆周角的一个特例,即圆周角的一边绕顶点旋转到与圆相切时所成的角.正因为如此,弦切角具有与圆周角类似的性质.

弦切角定理:弦切角等于它所夹的孤对的圆周角.它是圆中证明角相等的重要定理之一.

切割线定理:从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项.

推论:从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等.

切线长定理为初等平面几何的一个定理。在圆中,在经过圆外一点的切线,这一点和切点之间的线段叫做这点到圆的切线长。它指出,从圆外一点引圆的两条切线,它们的切线长相等。

切线长定理推论:

1、圆的外切四边形的两组对边的和相等;

2、从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角。

扩展资料:

切割线定理:

1、从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项。与圆相交的直线是圆的割线。切割线定理揭示了从圆外一点引圆的切线和割线时,切线与割线之间的关系。这是一个重要的定理,在解题中经常用到。

2、 从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等。

参考资料来源:百度百科-切线长定理

参考资料来源:百度百科-切割线定理


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/zaji/5830588.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-02-04
下一篇 2023-02-04

发表评论

登录后才能评论

评论列表(0条)

保存