弦切线定理

弦切线定理,第1张

切线定理目录

英文名称

切线的判定和性质切线的判定定理

切线的性质定理

切线长定理

弦切角定理

切割线定理

弦切角概念英文名称

切线的判定和性质 切线的判定定理

切线的性质定理

切线长定理

弦切角定理

切割线定理

弦切角概念

展开 编辑本段英文名称

弦切线定理 Tangent chord theorem

编辑本段切线的判定和性质

切线的判定定理

经过半径的外端并且垂直于这条半径的直线是圆的切线

几何语言: ∵l ⊥OA,点A在⊙O上 ∴直线l是⊙O的切线(切线判定定理)

切线的性质定理

圆的切线垂直于经过切点半径 几何语言: ∵OA是⊙O的半径,直线l切⊙O于点A ∴l ⊥OA(切线性质定理) 推论1 经过圆心且垂直于切线的直径必经过切点 推论2 经过切点且垂直于切线的直线必经过圆心

编辑本段切线长定理

从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角 几何语言: ∵直线PB、PD切⊙O于A、C两点 ∴PA=PC,∠APO=∠CPO(切线长定理)

编辑本段弦切角定理

弦切角等于它所夹的弧对的圆周角 几何语言:∵∠BCN所夹的是,∠A所对的是 ∴∠BCN=∠A 推论 如果两个弦切角所夹的弧相等,那么这两个弦切角也相等几何语言:∵∠BCN所夹的是 ,∠ACM所对的是 , = ∴∠BCN=∠ACM

编辑本段切割线定理

从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项。推论:从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等。

编辑本段弦切角概念

顶点在圆上,一边和圆相交、另一边和圆相切的角叫做弦切角.它是继圆心角、圆周角之后第三种与圆有关的角.这种角必须满足三个条件: (1)顶点在圆上,即角的顶点是圆的一条切线的切点; (2)角的一边和圆相交,即角的一边是过切点的一条弦所在的射线; (3)角的另一边和圆相切,即角的另一边是切线上以切点为端点的一条射线. 它们是判断一个角是否为弦切角的标准,三者缺一不可,比如下图中 均不是弦切角. (4)弦切角可以认为是圆周角的一个特例,即圆周角的一边绕顶点旋转到与圆相切时所成的角.正因为如此,弦切角具有与圆周角类似的性质.

没画图不好说

简单口述哈

就是一条切线 的切点 与圆上另一点所的连线所形成的角 等于 所形成弦的圆周角

上诉说法不严密 但是 可以这样说吧


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/zaji/5855144.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-02-21
下一篇 2023-02-21

发表评论

登录后才能评论

评论列表(0条)

保存