柯西黎曼条件是什么?

柯西黎曼条件是什么?,第1张

柯西-黎曼条件,即柯西--黎曼微分方程,提供了可微函数在开集中为全纯函数的充要条件的两个偏微分方程,以柯西和黎曼得名,如图:

这个方程组最初出现在达朗贝尔的著作中。后来欧拉将此方程组和解析函数联系起来。 然后柯西采用这些方程来构建他的函数理论。黎曼关于此函数理论的论文于1851年问世。

柯西-黎曼条件研究历史:

复分析中的柯西-黎曼微分方程是提供了可微函数在开集中全纯函数的充要条件的两个偏微分方程,以柯西和黎曼得名。这个方程组最初出现在达朗贝尔的著作中(d'Alembert 1752)。

后来欧拉将此方程组和解析函数联系起来(Euler 1777)。 然后柯西(Cauchy 1814)采用这些方程来构建他的函数理论。黎曼关于此函数理论的论文(Riemann 1851)于1851年问世。

柯西黎曼方程是:柯西-黎曼条件,即柯西-黎曼方程,提供了可微函数在开集中为全纯函数的充要条件的两个偏微分方程,以柯西和黎曼得名。

柯西-黎曼方程是复变函数在一点可微的必要条件,证明不难。因为可微,所以就列出线性主部表出的一个式子,实部对实部,虚部对虚部,可以求得:

内容:

复变函数论主要包括单值解析函数理论、黎曼曲面理论、几何函数论、留数理论、广义解析函数等方面的内容。如果当函数的变量取某一定值的时候,函数就有一个唯一确定的值,那么这个函数解就叫做单值解析函数,多项式就是这样的函数。

复变函数也研究多值函数,黎曼曲面理论是研究多值函数的主要工具。由许多层面安放在一起而构成的一种曲面叫做黎曼曲面。利用这种曲面,可以使多值函数的单值枝和枝点概念在几何上有非常直观的表示和说明。

这是复函数为可微(或全纯)的充分必要条件.设这个复值函数为f(x+yi)=u(x,y)+v(x,y)i,则这个条件是du/dx=dv/dy,和dv/dx=-du/dy(是偏微分符号,我不会打).


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/zaji/5944865.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-03-09
下一篇 2023-03-09

发表评论

登录后才能评论

评论列表(0条)

保存