蛋白质一级结构(primary structure)
是指多肽链的氨基酸残基的排列顺序,也是蛋白质最基本的结构。它是由基因上遗传密码的排列顺序所决定的,各种氨基酸按遗传密码的顺序通过肽键连接起来。
每一种蛋白质分子都有自己特有的氨基酸的组成和排列顺序即一级结构,由这种氨基酸排列顺序决定它的特定的空间结构,也就是蛋白质的一级结构决定了蛋白质的二级三级等高级结构。
胰岛素(Insulin)由51个氨基酸残基组成,分为A、B两条链。A链21个氨基酸残基,B链30个氨基酸残基。A、B两条链之间通过两个二硫键联结在一起,A链另有一个链内二硫键。
蛋白质二级结构(secondary structure)
二级结构是指多肽链借助于氢键沿一维方向排列成具有周期性的结构的构象,是多肽链局部的空间结构(构象),主要有α-螺旋、β-折叠、β-转角等几种形式,它们是构成蛋白质高级结构的基本要素。
α-螺旋(α-helix)是蛋白质中最常见最典型含量最丰富的二级结构元件在α螺旋中,每 个螺旋周期包含 36 个氨基酸残基,残基侧链伸向外侧,同一肽链上的每个残基的酰胺氢原子和位于它后面的第4个残基上的羰基氧原子之间形成氢键。这种氢键大致与螺旋轴平行。一条多肽链呈α-螺旋构象的推动力就是所有肽键上的酰胺氢和羰基氧之间形成的链内氢键。在水环境中,肽键上的酰胺氢和羰基氧既能形成内部(α-螺旋内)的氢键,也能与水分子形成氢键。如果后者发生,多肽链呈现类似变性蛋白质那样的伸展构象。疏水环境对于氢键的形成 没有影响,因此,更可能促进α-螺旋结构的形成。
β-折叠(β-sheet)也是一种重复性的结构,可分为平行式和反平行式两种类型,它们是通过肽链间或肽段间的氢键维系。可以把它们想象为由折叠的条状纸片侧向并排而成,每条纸片可看成是一条肽链, 称为β折叠股或β股(β-strand),肽主链沿纸条形成锯齿状,处于最伸展的构象,氢键主要在股间而不是股内。α-碳原子位于折叠线上,由于其四面体性质,连续的酰氨平面排列成折叠形式。需要注意的是在折叠片上的侧链都垂直于折叠片的平面,并交替的从平面上下二侧伸出。平行折叠片比反平行折叠片更规则且一般是大结构而反平行折叠片可以少到仅由两个β股组成。
β-转角(β-turn)是种简单的非重复性结构。在β-转角中第一个残基的C=O与第四个残基的N-H氢键键合形成一个紧密的环,使β-转角成为比较稳定的结构,多处在蛋白质分子的表面,在这里改变多肽链方向的阻力比较小。β-转角的特定构象在一定程度上取决与他的组成氨基酸,某些氨基酸如脯氨酸和甘氨酸经常存在其中,由于甘氨酸缺少侧链(只有一个H),在β-转角中能很好的调整其他残基的空间阻碍,因此使立体化学上最合适的氨基酸;而脯氨酸具有换装结构和固定的角,因此在一定程度上迫使β-转角形成,促使多台自身回折且这些回折有助于反平行β折叠片的形成。
蛋白质三级结构(tertiary structure)
三级结构主要针对球状蛋白质而言的是指整条多肽链由二级结构元件构建成的总三维结构,包括一级结构中相距远的肽段之间的几何相互关系,骨架和侧链在内的所有原子的空间排列。在球状蛋白质中,侧链基团的定位是根据它们的极性安排的。蛋白质特定的空间构象是由氢键、离子键、偶极与偶极间的相互作用、疏水作用等作用力维持的,疏水作用是主要的作用力。有些蛋白质还涉及到二硫键。
如果蛋白质分子仅由一条多肽链组成,三级结构就是它的最高结构层次。
蛋白质四级结构(quaternary structure)
四级结构是指在亚基和亚基之间通过疏水作用等次级键结合成为有序排列的特定的空间结构。四级结构的蛋白质中每个球状蛋白质称为亚基,亚基通常由一条多肽链组成,有时含两条以上的多肽链,单独存在时一般没有生物活性。亚基有时也称为单体(monomer),仅由一个亚基组成的并因此无四级结构的蛋白质如核糖核酸酶称为单体蛋白质,由两个或两个以上亚基组成的蛋白质统称为寡聚蛋白质,多聚蛋白质或多亚基蛋白质。多聚蛋白质可以是由单一类型的亚基组成,称为同多聚蛋白质或由几种不同类型的亚基组成称为杂多聚蛋白质。对称的寡居蛋白质分子可视为由两个或多个不对称的相同结构成分组成,这种相同结构成分称为原聚体或原体(protomer)。在同多聚体中原体就是亚基,但在杂聚体中原体是由两种或多种不同的亚基组成。
蛋白质的四级结构涉及亚基种类和数目以及各亚基或原聚体在整个分子中的空间排布,包括亚基间的接触位点(结构互补)和作用力(主要是非共价相互作用)。大多数寡聚蛋白质分子中亚基数目为偶数,尤以2和4为多;个别为奇数,如荧光素酶分子含3个亚基。亚基的种类一般是一种或两种,少数的多于两种。
稳定四级结构的作用力与稳定三级结构的没有本质区别。亚基的二聚作用伴随着有利的相互作用包括范徳华力,氢键,离子键和疏水作用还有亚基间的二硫键。亚基缔合的驱动力主要是疏水作用,因亚基间紧密接触的界面存在极性相互作用和疏水作用,相互作用的表面具有极性基团和疏水基团的互补排列;而亚基缔合的专一性则由相互作用的表面上的极性基团之间的氢键和离子键提供。一般认为,驱动蛋白质折叠的主要动力是熵效应。折叠的结果是疏水基团埋藏在蛋白质分子内部,亲水基团暴露在分子表面。在形成分子疏水核心的同时,必然有一部分主链埋藏进了里面,而主链是高度亲水的。这就形成了矛盾。那么,解决这一矛盾的方法就是将处于分子内部的亲水基团用氢键中和。正是这种能量中和平衡中,蛋白质的主链折叠产生由氢键维系的有规则的构象,称为蛋白质的二级结构。
常见的结构有这些。
(一)α螺旋
α螺旋式蛋白质中最常见‘最典型、含量最丰富的二级结构元件。α螺旋是一种重复性的结构,每圈螺旋占36个氨基酸残基,沿螺旋方向上升054nm。残基的侧链伸向外侧。相邻螺圈之间形成氢键,氢键取向几乎与螺旋轴平行。
α螺旋本身是一个偶极矩,相当于在N末端积累了部分正电荷,在C末端积累了部分负电荷。
蛋白质中几乎所有的α螺旋都是右手的手性。不过,需要注意,右手α螺旋和左手α螺旋并不是对映体哦。
α螺旋的稳定性由R基的电荷性质、大小决定。
(二)β折叠片
由局部的协同性氢键形成,称为β折叠片。
β折叠片也是一种重复性结构,折叠片上的侧链都是垂直于折叠片的平面,并交替从平面上下二侧伸出。
折叠片可以有两种形式,一是平行式,另一种是反向平行式。
在纤维状蛋白质中,主要是反向平行式的β折叠片形式的蛋白质。
(三)β转角和β突起
自然界中的蛋白质多数是球状蛋白质(注意,不等同于球蛋白)。因此多肽链必须具有弯曲、回折和重新定位的能力,以便形成结实、球状的结构。
β转角时一种非重复性的结构,间临蛋白质的N-H和O形成氢键使得肽链发生弯曲。
目前发现的β转角多数都处在蛋白质分子的表面,因为在表面改变多肽链的方向阻力比较小。
β突起是一种小片的非重复性结构,能单独存在,但,大多数经常作为反向平行的β折叠片中的一种不规则情况而存在。
(四)无规卷曲
它是泛指那些没有纳入以上三种形式的二级结构。
这里,我只说明一点,无规卷曲只是这一大类二级结构的统称,其本身并不能代表什么,其实,大多数的无规卷曲并不是无规则的,也不是卷曲的。
谢谢!
………………
维持蛋白质二级结构稳定性的因素主要有氢键、二硫键、疏水作用力以及共价键。
以上这些结构力都不如离子键那么强力,所以,对结构的保持有一定的局限性,这就导致了蛋白质二级结构的可变性。
1)可变性的意义
蛋白质的二级结构的可变性有多重生物学意义。首先,蛋白质的降解需要先将蛋白质的折叠、螺旋打破,形成多肽链,才能有利于蛋白酶的催化。第二,绝大多数酶类都是蛋白质,在酶活性的调节里,有一种调节相当普遍,通过调节分子与酶的作用,改变酶的构象,从而导致酶活性的抑制或加强,在改变构象的过程中,其二级结构的改变是基础。另外,物质的主动运输与蛋白质的二级结构改变密切相关,肌肉的收缩过程也牵涉到蛋白质二级结构的改变,这两点请参考细胞生物学相关书籍。
2)可变性的内容
可变性主要是折叠片、螺旋片之间的相对滑动也转角的角度变化。这些变化都是耗能过程,需要ATP水解提供能量。蛋白质种类很多,性质上的差异很大,既或是同类蛋白质,因选用材料不同,使用方法差别也很大,且又处于不同的体系中,因此不可能有一个固定的程序适用各类蛋白质的分离。但多数分离工作中的关键部分基本手段还是共同的,大部分蛋白质均可溶于水、稀盐、稀酸或稀碱溶液中,少数与脂类结合的蛋白质溶于乙醇、丙酮及丁醇等有机溶剂中。因此可采用不同溶剂提取、分离及纯化蛋白质和酶。蛋白质与酶在不同溶剂中溶解度的差异,主要取决于蛋白分子中非极性疏水基团与极性亲水基团的比例,其次取决于这些基团的排列和偶极矩。故分子结构性质是不同蛋白质溶解差异的内因。温度、pH、离子强度等是影响蛋白质溶解度的外界条件。提取蛋白质时常根据这些内外因素综合加以利用。将细胞内蛋白质提取出来。并与其它不需要的物质分开。但动物材料中的蛋白质有些可溶性的形式存在于体液(如血浆、消化硫等)中,可以不必经过提取直接进行分离。蛋白质中的角蛋白、胶原及丝蛋白等不溶性蛋白质,只需要适当的溶剂洗去可溶性的伴随物,如脂类、糖类以及其他可溶性蛋白质,最后剩下的就是不溶性蛋白质。这些蛋白质经细胞破碎后,用水、稀盐酸及缓冲液等适当溶剂,将蛋白质溶解出来,再用离心法除去不溶物,即得粗提取液。水适用于白蛋白类蛋白质的抽提。如果抽提物的pH用适当缓冲液控制时,共稳定性及溶解度均能增加。如球蛋白类能溶于稀盐溶液中,脂蛋白可用稀的去垢剂溶液如十二烷基硫酸钠、洋地黄皂苷(Digitonin)溶液或有机溶剂来抽提。其它不溶于水的蛋白质通常用稀碱溶液抽提。
不同结构的蛋白质及其溶解性质
蛋白质类别
溶解性质
简单蛋白质
溶于水及稀盐、稀酸、稀碱溶液,可被50%饱和度硫酸铵析出。
真球蛋白
一般在等电点时不溶于水,但加入少量的盐、酸、碱则可溶解。
拟球蛋白
溶于水,可为50%饱和度硫酸铵析出。
醇溶蛋白
溶于70~80%乙醇中,不溶于水及无水乙醇。
壳蛋白
在等电点不溶于水,也不溶于稀盐酸,易溶于稀酸、稀碱溶液。
精蛋白
溶于水和稀酸,易在稀氨水中沉淀。
组蛋白
溶于水和稀酸,易在稀氨水中沉淀。
硬蛋白质
不溶于水、盐、稀酸及稀碱。
缀合蛋白
蛋白质溶解性质随蛋白质与非蛋白质结合部分的不同而异,除脂蛋白外,一般可溶于稀酸、稀碱及盐溶液中,脂蛋白如脂肪部分露于外,则脂溶性占优势,如脂肪部分被包围于分子之中,则水溶性占优势。
注:缀合蛋白-包括磷蛋白、粘蛋白、糖蛋白、核蛋白、脂蛋白、血红蛋白、金属蛋白、黄素蛋白和氮苯蛋白等。
蛋白质的制备是一项十分细致的工作。涉及物理学、化学和生物学的知识很广。近年来虽然有了不少改进,但其主要原理仍不外乎两个方面:一是利用混合物中几个组分分配率的差别,把它们分配于可用机械方法分离的两个或几个物相中,如盐析、有机溶剂提取、层析和结晶等;二是将混合物置于单一物相中,通过物理力场的作用使各组分分配于不同区域而达到分离的目的,如电泳、超离心、超滤等。由于蛋白质不能溶化,也不能蒸发,所能分配的物相只限于固相和液相,并在这两相间互相交替进行分离纯化。制备方法可按照分子大小、形状、带电性质及溶解度等主要因素进行分类。按分子大小和形态分为差速离心、超滤、分子筛及透析等方法;按溶解度分为盐析、溶剂抽提、分配层析、逆流分配及结晶等方法;按电荷差异分为电泳、电渗析、等电点沉淀、离子交换层析及吸附层析等;按生物功能专一性有亲合层析法等。
由于不同生物大分子结构及理化性质不同,分离方法也不一样。即同一类生物大分子由于选用材料不同,使用方法差别也很大。因此很难有一个统一标准的方法对任何蛋白质均可循用。因此实验前应进行充分调查研究,查阅有关文献资料,对欲分离提纯物质的物理、化学及生物学性质先有一定了解,然后再着手进行实验工作。对于一个未知结构及性质的试样进行创造性的分离提纯时,更需要经过各种方法比较和摸索,才能找到一些工作规律和获得预期结果。其次在分离提纯工作前,常须建立相应的分析鉴定方法,以正确指导整个分离纯化工作的顺利进行。高度提纯某一生物大分子,一般要经过多种方法、步骤及不断变换各种外界条件才能达到目的。因此,整个实验过程方法的优劣,选择条件效果的好坏,均须通过分析鉴定来判明。
另一方面,蛋白质常以与其他生物体物质结合形式存在,因此也易与这些物质结合,这给分离精制带来了困难。如极微量的金属和糖对巨大蛋白质的稳定性起决定作用,若被除去则不稳定的蛋白质结晶化的难度也随之增加。如高峰淀粉酶A的Ca2+,胰岛素 Zn2+等。此外,高分子蛋白质具有一定的立体构象,相当不稳定,如前所述极易变性、变构,因此限制了分离精制的方法。通常是根据具体对象联用各种方法。为得到天然状态的蛋白质,尽量采用温和的手段,如中性、低温、避免起泡等,并还要注意防腐。
注意共存成分的影响。如蝮蛇粗毒的蛋白质水解酶活性很高,在分离纯化中需引起重视。纯化蝮蛇神经毒素时,当室温超过20℃时,几乎得不到神经毒素。蝮蛇毒中的蛋白水解酶能被01mol/L EDTA完全抑制,因此在进行柱层析前先将粗毒素 01mol/LEDTA溶液处理,即使在室温高于20℃,仍能很好的得到神经毒素。
整个制备过程一般可分为5个阶段:①材料的选择和预处理,②细胞的破碎(有时需进行细胞器的分离),③提取,④纯化(包括盐析,有机溶剂沉淀,有机溶剂提取、吸附、层析、超离心及结晶等),⑤浓缩、干燥及保存。以上5个阶段不是要求每个方案都完整地具备,也不是每一阶段截然分开。
不论是哪一阶段使用哪一种方法,均必须在 *** 作中保存生物大分子结构的完整性。保存活性防止变性及降解现象的发生。因空间结构主要依靠氢键、盐键和范德华力的存在,遇酸、遇碱、高温、剧烈的机械作用及强烈的辐射等均可导致活性丧失。因此选择的条件应为十分温和。同时应注意防止系统中重金属离子、细胞自身酶系及其他有毒物质的污染。
一、原料的选择
早年为了研究的方便,尽量寻找含某种蛋白质丰富的器官从中提取蛋白质。但至目前经常遇到的多是含量低的器官或组织且量也很小,如下丘脑、松果体、细胞膜或内膜等原材料,因而对提取要求更复杂一些。
原料的选择主要依据实验目的定。从工业生产角度考虑,注意选含量高、来源丰富及成本低的原料。尽量要新鲜原料。但有时这几方面不同时具备。含量丰富但来源困难,或含量来源均理想,但分离纯化 *** 作繁琐,反而不如含量略低些易于获得纯品者。一般要注意种属的关系,如鲣的心肌细胞色素C较马的易结晶,马的血红蛋白较牛的易结晶。要事前调查制备的难易情况。若利用蛋白质的活性,对原料的种属应几乎无影响。如利用胰蛋白酶水解蛋白质的活性,用猪或牛胰脏均可。但若研究蛋白质自身的性质及结构时,原料的来源种属必须一定。研究由于病态引起的特殊蛋白质(本斯琼斯氏蛋白、贫血血红蛋白)时,不但使用种属一定的原料,而且要取自同一个体的原料。可能时尽量用全年均可采到的原料。对动物生理状态间的差异(如饥饿时脂肪和糖类相对减少),采收期及产地等因素也要注意。
二、前处理
1、细胞的破碎
材料选定通常要进行处理。要剔除结缔组织及脂肪组织。如不能立即进行实验,则应冷冻保存。除了提取及胞细外成分,对细胞内及多细胞生物组织中的蛋白质的分离提取均须先将细胞破碎,使其充分释放到溶液中。不同生物体或同一生物体不同的组织,其细胞破坏难易不一,使用方法也不完全相同。如动物胰、肝、脑组织一般较柔软,作普通匀浆器磨研即可,肌肉及心组织较韧,需预先绞碎再制成匀桨。
⑴机械方法
主要通过机械切力的作用使组织细胞破坏。常用器械有:①高速组织捣碎机(转速可达 10000rpm,具高速转动的锋利的刀片),宜用于动物内脏组织的破碎;②玻璃匀浆器(用两个磨砂面相互摩擦,将细胞磨碎),适用于少量材料,也可用不锈钢或硬质塑料等,两面间隔只有十分之几毫米,对细胞破碎程度较高速捣碎机高,机械切力对分子破坏较小。小量的也可用乳钵与适当的缓冲剂磨碎提取,也可加氧化铝、石英砂及玻璃粉磨细。但在磨细时局部往往生热导致变性或pH显著变化,尤其用玻璃粉和氧化铝时。磨细剂的吸附也可导致损失。
⑵物理方法
主要通过各种物理因素的作用,使组织细胞破碎的方法。
Ⅰ反复冻融法
于冷藏库或干冰反复于零下15~20℃使之冻固,然后缓慢地融解,如此反复 *** 作,使大部分细胞及细胞内颗粒破坏。由于渗透压的变化,使结合水冻结产生组织的变性,冰片将细胞膜破碎,使蛋白质可溶化,成为粘稠的浓溶液,但脂蛋白冻结变性。
Ⅱ冷热变替法
将材料投入沸水中,于90℃左右维持数分钟,立即置于冰浴中使之迅速冷却,绝大部分细胞被破坏。
Ⅲ超声波法
暴露于9~10千周声波或10~500千周超声波所产生的机械振动,只要有设备该法方便且效果也好,但一次处理量较小。应用超声波处理时应注意避免溶液中气泡的存在。处理一些超声波敏感的蛋白质酶时宜慎重。
Ⅳ加压破碎法
加一定气压或水压也可使细胞破碎。
⑶化学及生物化学方法
Ⅰ有机溶媒法
粉碎后的新鲜材料在0℃以下加入5~10倍量的丙酮,迅速搅拌均匀,可破碎细胞膜,破坏蛋白质与脂质的结合。蛋白质一般不变性,被脱脂和脱水成为干燥粉末。用少量乙醚洗,经滤纸干燥,如脱氢酶等可保存数月不失去活性。
Ⅱ自溶法
将待破碎的鲜材料在一定pH和适当的温度下,利用自身的蛋白酶将细胞破坏,使细胞内含物释放出来。比较稳定,变性较难,蛋白质不被分解而可溶化。利用该法可从胰脏制取羧肽酶。自体融解时需要时间,需加少量甲苯、氯仿等。应防止细菌污染。于温室 30℃左右较早溶化。自体融解过程中PH显著变化,随时要调节pH。自溶温度选在0~4℃,因自溶时间较长,不易控制,所以制备活性蛋白质时较少用。
Ⅲ酶法
与前述的自体融法同理,用胰蛋白酶等蛋白酶除去变性蛋白质。但值得提出的是溶菌酶处理时,它能水解构成枯草菌等菌体膜的多糖类。能溶解菌的酶分布很广。尤其卵白中含量高,而多易结晶化。1g菌体加1~10mg溶菌酶, pH62~701h内完全溶菌。于生理食盐水或02mol蔗糖溶液中溶菌,虽失去细胞膜,但原形质没有脱出。除溶菌酶外,蜗牛酶及纤维素酶也常被选为破坏细菌及植物细胞用。
表面活性剂处理
较常用的有十二烷基磺酸钠、氯化十二烷基吡淀及去氧胆酸钠等。
此外一些细胞膜较脆弱的细胞,可把它们置于水或低渗缓冲剂中透析将细胞胀破。
2、细胞器的分离
制备某一种生物大分子需要采用细胞中某一部分的材料,或者为了纯化某一特定细胞器上的生物大分子,防止其他细胞组分的干扰,细胞破碎后常将细胞内各组分先行分离,对于制备一些难度较大需求纯度较高的生物大分子是有利的。尤其近年来分子生物学、分子遗传学、遗传工程等学科和技术的发展,对分布在各种细胞器上的核酸和蛋白质的研究工作日益增多,分离各种细胞器上的各类核酸和特异性蛋白质已成为生物大分子制备工作重要内容之一。各类生物大分子在细胞内的分布是不同的。DNA几乎全部集中在细胞核内。RNA则大部分分布于细胞质。各种酶在细胞内分布也有一定位置。因此制备细胞器上的生物大分子时,预先须对整个细胞结构和各类生物大分子在细胞内分布匹有所了解。以肝细胞为例整理如表1
表1 蛋白质、酶及核酸在肝细胞内分布情况
细胞器名称
主要蛋白质及酶类、核酸类
核酸类
细胞核
细胞核 精蛋白、组蛋白、核酸合成酶系
RNA占总量10%左右,DNA几乎全部
线粒体
电子传递、氯化磷酸化、三羧酸循环、脂肪酸氧化、氨基酸氧化、脲合成等酶系。
RNA占总量5%左右,DNA微量
内质网(微粒体)
蛋白质合成酶系、羟化酶系。
RNA占总量50%左右
溶酶体
水解酶系(包括核酸酶、磷酸脂酶、组织蛋白酶及糖苷及糖苷酶等)。
细胞膜
载体与受体蛋白、特异抗蛋、ATP酶、环化腺苷酶、5’-核苷酸酶琥珀酸脱氢酶、葡萄糖-6-磷酸酶等。
细胞液
嘧啶和嘌呤代谢、氨基酸合成酶系、可溶性蛋白类。
RNA(主要为tRNA)占总量30%
高尔基氏体
糖苷转移酶、粘多糖及类固醇合成酶系。
细胞器的分离一般采用差速离心法。细胞经过破碎后,在适当介质中进行差速离心。利用细胞各组分质量大小不同,沉降于离心管内不同区域,分离后即得所需组分。细胞器的分离制备、介质的选择十分重要。最早使用的介质是生理盐水。因它容易使亚细胞颗粒发生聚集作用结成块状,沉淀分离效果不理想,现一般改用蔗糖、Ficoll(一种蔗糖多聚物)或葡萄糖-聚乙二醇等高分子溶液。
21水溶液提取
大部分蛋白质均溶于水、稀盐、稀碱或稀酸溶液中。因此蛋白质的提取一般以水为主。稀盐溶液和缓冲溶液对蛋白质稳定性好、溶度大,也是提取蛋白质的最常用溶剂。以盐溶液及缓冲液提取蛋白质进常注意下面几个因素。
22盐浓度
等渗盐溶液尤以002~005mol/L磷酸盐缓冲液和碳酸盐缓冲液常用。 015mol/L氯化钠溶液应用也较多。如6-磷酸葡萄糖脱氢酶用01mol/L碳酸氢钠液提取等。有时为了螯合某些金属离子和解离酶分子与其他杂质的静电结合,也常使用枸橼酸钠缓冲液和焦磷酸钠缓冲液。有些蛋白质在低盐浓度下浓度低,如脱氧核糖核蛋白质需用1mol/L以上氯化钠液提取。总之,只要能溶解在水溶液中而与细胞颗粒结合不太紧密的蛋白质和酶,细胞破碎后选择适当的盐浓度及PH,一般是不难提取的。只有某些与细胞颗粒上的脂类物质结合较紧的,需采用有机溶剂或加入表面活性剂处理等方法提取。
23PH值
蛋白质提取液的PH值首先应保证在蛋白质稳定的范围内,即选择在偏离等电点两侧。如碱性蛋白质则选在偏酸一侧,酸性蛋白质选择偏碱一侧,以增大蛋白质的溶解度,提高提取效果。如细胞色素C属碱性蛋白质,常用稀酸提取,肌肉甘油醛-3-磷酸脱氢酶属酸性蛋白质,用稀碱提取。某些蛋白质或酶与其分物质结合常以离子键形式存在,选择PH3~6范围对于分离提取是有利的。
24温度
多数酶的提取温度在5℃以下。少数对温度耐受性较高的蛋白质和酶,可适当提高温度,使杂蛋白变性分离且也有利于提取和进一步纯化。如胃蛋白酶等及许多多肽激素类,选择37~50℃条件下提取,效果比低温提取更好。☆ 考点1:中药有效成分的提取
中药之所以能够防病治病,其物质基础在于所含的有效成分。如淀粉、树脂、叶绿素等一般被认为是无效成分或者杂质。
从药材中提取活性成分的方法有溶剂法、水蒸气蒸馏法及升华法等。一般用溶剂法提取中药材的有效成分,常用的方法有浸渍法、渗漉法、煎煮法、回流提取法、连续回流提取法等。
1浸渍法:是在常温或温热(60~80℃)条件下用适当的溶剂浸渍药材以溶出其中成分的方法。本法适用于有效成分遇热不稳定的或含大量淀粉、树胶、果胶、黏液质中药的提取。
2渗漉法:是不断向粉碎的中药材中添加新鲜浸出溶剂,使其渗过药材,从渗漉筒下端出口流出浸出液的一种方法。
3煎煮法:是在中药材中加入水后加热煮沸,将有效成分提取出来的方法。此法简便,但含挥发性成分或有效成分遇热易分解的中药材不宜用此法。
4回流提取法:是用易挥发的有机溶剂加热回流提取中药成分的方法。但对热不稳定的成分不宜用此法。
5连续回流提取法:弥补了回流提取法中溶剂消耗量大, *** 作繁杂的不足,实验室常用索氏提取器来完成本法 *** 作。但此法时间较长。
6水蒸气蒸馏法:适用于具有挥发性的,能随水蒸气蒸馏而不被破坏,且难溶或不溶于水的成分的提取。
7固体物质在受热时不经过熔融直接转化为蒸气,蒸气遇冷后又凝结成固体的现象叫做升华。中药中有一些成分具有升华的性质,能利用升华法直接从中药中提取出来。
☆☆☆☆考点2:根据物质溶解度差别进行中药有效成分的分离
1利用温度不同引起溶解度的改变以分离物质,如常见的结晶及重结晶等 *** 作。理想的溶剂必须具备下列条件:(1)不与重结晶物质发生化学反应。 (2)在较高温度时能够溶解大量的待重结晶物质;而在室温或更低温度时,只能溶解少量的待重结晶物质。(3)对杂质的溶解度或者很大或者很小。(4)溶剂 的沸点较低,容易挥发,易与结晶分离除去。(5)无毒或毒性很小,便于 *** 作。
一般可以根据结晶的形态和色泽、熔点和熔距及色谱法来判断结晶纯度。
2在溶液中加入另一种溶剂以改变混合溶剂的极性,使一部分物质沉淀析出,从而实现分离。常见的如在药材浓缩水提取液中加入数倍量高浓度乙醇,以 沉淀除去多糖、蛋白质等水溶性杂质(水-醇法);或在浓缩乙醇提取液中加入数倍量水稀释,放置。以沉淀除去树脂、叶绿素等水不溶性杂质(醇-水法);或在 乙醇浓缩液中加入数倍量乙醚(醇-醚法)或丙酮(醇-丙酮法),可使皂苷沉淀析出,而脂溶性的树脂等类杂质则留存在母液中等。
3对酸性、碱性或两性有机化合物来说,常可通过加入酸、碱以调节溶液的pH,改变分子的存在状态(游离型或解离型),从而改变溶解度而实现分离。例如,一些生物碱用酸性水从药材中提出后,加碱调至碱性即可从水中沉淀析出(酸-碱法)。
4酸性或碱性化合物还可通过加入某种沉淀试剂使之生成水不溶性的盐类等沉淀析出。例如酸性化合物可做成钙盐、钡盐、铅盐等;碱性化合物如生物碱等,则可做成苦味酸盐、苦酮酸盐等有机酸盐或磷钼酸盐、磷钨酸盐、雷氏铵盐等无机酸盐。
☆ 考点3:液-液分配柱色谱
1正相色谱与反相色谱:液-液分配柱色谱用的载体主要有硅胶、硅藻土及纤维素粉等。根据烃基(-R)长度为乙基(-C2H5)还是辛基(- C8H17)或十八烷基(-C18H37),分别命名为RP-2、RP-8及RP-18三者亲脂性强弱顺序如下:RP-18>RP-8>RP-2。
2加压液相柱色谱:按加压强弱可以分为快速色谱、低压液相色谱、中压液相色谱及高压液相色谱等。
☆ ☆☆☆☆考点4:根据物质的吸附性差别进行中药有效成分的分离
1物理吸附基本规律:相似者易于吸附。硅胶、氧化铝因均为极性吸附剂,因此具有以下特点:
(1)对极性物质具有较强的亲和能力。故同为溶质,极性强者将被优先吸附。
(2)溶剂极性越弱,则吸附剂对溶质将表现出越强的吸附能力。溶剂极性增强,则吸附剂对溶质的吸附能力即随之减弱。
(3)溶质即使被硅胶、氧化铝吸附,但一旦加入极性较强的溶剂时,又可被后者置换洗脱下来。
活性炭因为是非极性吸附剂,对非极性物质具有较强的亲和能力,在水中对溶质表现出较强的吸附能力。
2极性及其强弱判断:极性强弱是支配物理吸附过程的主要因素。所谓极性乃是一种抽象概念,用以表示分子中电荷不对称的程度,并大体上与偶极矩、极化度及介电常数等概念相对应。
(1)化合物结构中官能团的极性强弱按下图顺序排列:
(2)化合物的极性则由分子中所含官能团的种类、数目及排列方式等综合因素所决定。
(3)溶剂的极性可以大体根据介电常数(ε)的大小来判断。常用溶剂的介电常数及其极性排列如下表所示:
3聚酰胺吸附色谱法:聚酰胺吸附属于氢键吸附,极性物质与非极性物质均可选用,但特别适合分离酚类、醌类、黄酮类化合物。
(1)聚酰胺的性质及吸附原理:商品聚酰胺均为高分子聚合物质,不溶于水、甲醇、乙醇、乙醚、氯仿及丙酮等常用有机溶剂,对碱较稳定,对酸尤其是 无机酸稳定性较差,可溶于浓盐酸、冰乙酸及甲酸。一般认为吸附强弱则取决于各种化合物与之形成氢键缔合的能力。各种溶剂在聚酰胺柱上的洗脱能力由弱至强, 可大致排列成下列顺序:水→甲醇→丙酮→氢氧化钠水溶液→甲酰胺-二甲基甲酰胺→尿素水溶液
(2)聚酰胺色谱的应用:只限于酚类、黄酮类化合物的制备分离。
4大孔吸附树脂的吸附原理:大孔吸附树脂具有选择性吸附和分子筛的性能。它的吸附性是由于范德华引力或产生氢键的结果,分子筛的性能是由于其本身的多孔性网状结构决定的。
☆☆☆☆考点5:性状
多数生物碱为结晶状的固体,有一定的熔点,有些为无定形粉末。少数分子较小的生物碱呈液体状态,其分子结构中不含氧原子如烟碱,或氧原子结合为酯 键如槟榔碱等。个别液体状态及小分子的固体生物碱具有挥发性,如麻黄碱;极少数生物碱还具有升华性,如咖啡因、川芎嗪等。
多数生物碱味苦,少数辛辣或具有其他味道,如甜菜碱具有甜味。
绝大多数生物碱为无色或白色,仅少数分子中具有较长共轭体系及助色团的生物碱有颜色,如小檗碱为**、药根碱为红色。有的生物碱在可见光下无色,而在紫外光下显荧光,如利舍平。
☆考点6:旋光性
大多数生物碱的分子结构中含有手性碳原子且结构不对称,因而具有旋光性,且多呈左旋。
生物碱的旋光性受溶剂及pH、浓度等的影响。如麻黄碱在水中呈右旋,而在乙醇、氯仿及苯中则呈左旋。有的生物碱的旋光性可因外消旋化而消失,如洋金花中的莨菪碱外消旋后成消旋的莨菪碱(阿托品)。
生物碱的生理活性与其旋光性密切相关,一般左旋体的生理活性显著,右旋体的活性弱或无活性。如1-莨菪碱的散瞳作用比d-莨菪碱大100倍,去甲 乌药碱仅1-体具强心作用。但也有少数生物碱右旋体的生物活性较左旋体强,如d-古柯碱的局部麻醉作用强于1-古柯碱。
☆ 考点7:碱性
1生物碱碱性强弱的表示方法根据Lewis酸碱电子理论:凡是能给出电子的电子受体为碱;能接受电子的电子受体为酸。碱性强弱可用其碱式离解指 数pKb或其共轭酸的酸式离解指数pKa表示。pKa越大,该碱的碱性越强;反之,pKa越小,碱性越弱。根据生物碱的pKa值大小,可将生物碱按碱性强 弱分为:①强碱:pKa>11,如季铵碱、胍类生物碱;②中强碱:pKa8~11,脂胺类、脂杂环类生物碱;③弱碱:pKa3~7,如苯胺类、六元芳氮杂 环类;④近中性碱:pKa<3,如酰胺类、五元芳氮杂环类。
2生物碱碱性强弱与分子结构的关系:生物碱的碱性强弱与其氮原子在分子中的结合状态及其所处的化学环境有关。主要影响因素有氮原子的杂化方式、电性效应、空间效应及分子内氢键形式等。
(1)氮原子的杂化方式与碱性的关系:生物碱分子中的氮原子有sp3、sp2和sp三种杂化方式。氮原子的杂化方式与碱性强弱的关系表现为:sp3>sp2>sp。
(2)电性效应与碱性的关系:生物碱分子结构中的电性效应(包括诱导效应和共轭效应)能影响氮原子上电子云的分布,因而影响生物碱的碱性大小。
①诱导效应:生物碱分子中的氮原子上的电子云密度受到氮原子附近供电基(如烷基)和吸电基(如各类含氧基团、双键、苯基)诱导效应的影响。供电子诱导效应使氮原子上电子云密度增加,碱性增强;吸电子诱导效应使氮原子上电子云密度减小,碱性降低。
②共轭效应:当生物碱分子中氮原子的孤电子对与π-电子基团共轭时一般使生物碱的碱性减弱。常见的有苯胺和酰胺两种类型。
苯胺型:苯胺氮原子上的孤电子对与苯环兀-电子形成p-π共轭体系后,其碱性较环己胺弱得多。
酰胺型:酰胺中氮原子上的未共用电子对与羰基形成p-π共轭效应,使其碱性极弱,不易与酸成盐。
(3)空间效应与碱性的关系:多数生物碱具复杂的稠环结构,如果分子的立体结构对氮原子产生空间位阻,不利于氮原子接受质子,则生物碱的碱性减 弱,反之则碱性增强。例如,东莨菪碱分子结构中氮原子附近较莨菪碱多连一个6,7位环氧基,对氮原子产生显著的空间阻碍,其碱性较莨菪碱弱,山莨菪碱分子 中的6-OH对氮原子接受质子也产生立体阻碍,但不及东莨菪碱的氧环影响大,故其碱性介于东莨菪碱与莨菪碱之间。
(4)氢键效应与碱性的关系:当生物碱成盐后,N原子附近如有羟基、羰基,并处于有利于形成稳定的分子内氢键时,其共轭酸稳定,碱性强。
☆ ☆☆☆考点8:沉淀反应
大多数生物碱在酸水或稀醇中与某些试剂生成难溶于水的复盐或络合物的反应称为生物碱沉淀反应,这些试剂称为生物碱沉淀试剂。
1常用的生物碱沉淀试剂:常用的生物碱沉淀试剂的名称、组成及反应特征见下表:
2生物碱沉淀反应的条件及阳性结果的判断
(1)反应条件:生物碱沉淀反应一般在稀酸水溶液中进行。
(2)阳性结果判断:对生物碱进行定性鉴别时,应用三种以上沉淀试剂分别进行反应,如果均能发生沉淀反应,可判断为阳性结果。但需注意,极少数生 物碱不与一般生物碱沉淀试剂反应,如麻黄碱、咖啡碱,需用其他检识反应鉴别;而有些非生物碱类物质也能与生物碱沉淀试剂产生沉淀反应,如蛋白质、多肽、氨 基酸、鞣质等,同时,大多中药的提取液颜色较深,影响颜色的观察。
3生物碱沉淀反应的应用:生物碱沉淀反应主要用于检查中药或中药制剂中生物碱的有无,即生物碱的定性鉴别,可用试管进行定性反应,或作为薄层色 谱或纸色谱的显色剂(常用碘化铋钾试剂)。另外在生物碱的提取分离中还可作为追踪、指示终点。个别沉淀试剂可用于分离纯化生物碱,如雷氏铵盐可用于沉淀分 离季铵碱。
☆☆考点9:总生物碱的提取
1脂溶性生物碱的提取
(1)水或酸水提取法:常用05%~1%的硫酸或盐酸,采用浸渍法或渗漉法提取,个别含淀粉少者可用煎煮法。
(2)醇类溶剂提取法:用醇类溶剂,采用浸渍法、渗漉法、回流提取法和连续回流提取法提取。
(3)亲脂性有机溶剂提取法:利用游离生物碱易溶于亲脂性有机溶剂的性质,用氯仿、苯、乙醚以及二氯甲烷等溶剂,采用浸渍、回流或连续回流法提 取。由于生物碱大多与植物体内的有机酸结合成盐的状态存在,因此一般需将药材用碱水(石灰乳、碳酸钠溶液或稀氨溶液)湿润,使生物碱游离后提取。若提取液 中亲脂性杂质较多,可采用与醇类溶剂提取液相同的处理方法得到总生物碱。
2水溶性生物碱的分离。
(1)沉淀法:利用生物碱能与生物碱沉淀试剂生成难溶于水的复合物而从水中析出的原理,以达到与亲水性杂质分离的目的。
(2)溶剂法:利用水溶性生物碱能够溶于极性较大而又能与水分层的有机溶剂(如正丁醇、异戊醇或氯仿一甲醇的混合溶剂等)的性质,用这类溶剂与含水溶性生物碱的碱水液反复萃取,使水溶性生物碱与强亲水性的杂质得以分离。
☆ 考点10:薄层色谱
1吸附薄层色谱法
(1)吸附剂:常用的吸附剂有硅胶和氧化铝,最常用的是氧化铝。硅胶本身显弱酸性,直接用于分离和检识生物碱时,与碱性强的生物碱可形成盐而使斑 点的Rf值很小,或出现拖尾,或形成复斑,影响检识效果。为了避免出现这种情况,在涂铺硅胶薄层板时用稀碱溶液(01~05N的氢氧化钠溶液)或缓冲 液制成碱性硅胶薄板;或者使色谱过程在碱性条件下进行,即在展开剂中加入少量碱性试剂,如二乙胺、稀氨溶液等;或在展开槽中放一盛有稀氨溶液的小杯,用中 性展开剂在氨蒸气中进行展开。氧化铝本身显弱碱性,且吸附性能较硅胶强,其不经处理便可用于分离和检识生物碱。
(2)展开剂:展开剂系统多以亲脂性溶剂为主,一般以氯仿为基本溶剂,根据色谱结果调整展开剂的极性。一般来说,硅胶和氧化铝薄层色谱适用于分离和检识脂溶性生物碱。尤其是氧化铝的吸附力较硅胶强,更适合于分离亲脂性较强的生物碱。
2分配薄层色谱:用于分离有些结构十分相近的生物碱,可获得满意的效果。
(1)支持剂与固定相:常用硅胶或纤维素粉作支持剂,以甲酰胺或水作固定相。
(2)展开剂:分离脂溶性生物碱,以亲脂性有机溶剂作展开剂;分离水溶性生物碱,则应以亲水性的溶剂作展开剂。在配制流动相时,需用固定相饱和。
☆ ☆☆☆考点11:概述
1苷中与苷元连接的常见的单糖
(1)五碳醛糖
(2)六碳醛糖
(3)甲基五碳醛糖
(4)六碳酮糖
(5)糖醛酸单糖分子中伯醇基氧化成羧基的化合物叫糖醛酸。
2与苷元连接的二糖:常见的有龙胆二糖、麦芽糖、冬绿糖、蚕豆糖、昆布二糖、槐糖、芸香糖、新橙皮糖等。
☆☆☆☆☆考点12:苷键的裂解
1酸催化水解
(1)按苷键原子不同,酸水解的易难顺序为:N-苷>O-苷>S-苷>C-苷。
(2)呋喃糖苷较吡喃糖苷易水解,水解速率大50~100倍。
(3)酮糖较醛糖易水解。
(4)吡喃糖苷中吡喃环的C5上取代基越大越难水解,因此五碳糖最易水解,其顺序为五碳糖>甲基五碳糖>六碳糖>七碳糖。如果接有-COOH,则最难水解。
(5)氨基糖较羟基糖难水解,羟基糖又较去氧糖难水解。
(6)芳香属苷如酚苷因苷元部分有供电子结构,水解比脂肪属苷如萜苷、甾苷等要容易得多。
(7)苷元为小基团者,苷键横键的比苷键竖键的易于水解,因为横键上原子易于质子化。
2酸催化甲醇解:在酸的甲醇液中进行甲醇解,多糖或苷可生成一对保持环形的甲基糖苷的异构体。
3碱催化水解:苷键具有酯的性质时,碱就能水解。
4酶催化水解:用酶水解苷键可以获知苷键的构型,可以保持苷元结构不变,还可以保留部分苷键得到次级苷或低聚糖,以便获知苷元和糖、糖和糖之间 的连接方式。常用的酶有:①β-果糖苷水解酶:如转化糖酶,可以水解β-果糖苷键而保存其他苷键结构;②a-葡萄糖苷水解酶:如麦芽糖酶;③β-葡萄糖苷 水解酶:如杏仁苷酶,可以水解一般β-葡萄糖苷和有关六碳醛糖苷,专属性较低。纤维素酶也是β-葡萄糖苷水解酶,穿心莲中的穿心莲内酯19-β-D-葡萄 糖苷用硫酸水解时将发生去氧和末端双键移位,而用纤维素酶水解可得到原苷元。此外蜗牛酶,高峰氏糖化酶,橙皮苷酶,柑橘苷酶等也常用于苷键水解。
5氧化开裂法:Smith裂解是常用的氧化开裂法,可以开裂1,2-二元醇。此法性质温和,特别适用于一般酸水解时苷元结构容易改变的苷以及不易被酸水解的C-苷,但对苷元上也有1,2-二元醇结构的苷类并不适用。
☆ 考点13:提取方法
自植物中提取苷类物质,一般都是采用水或醇进行抽提。在提取时首先必须明确提取的目的要求,即要求提取的是原生苷、次生苷,还是苷元,然后,根据 要求进行提取,其提取方法是有差别的。由于植物体内有水解酶共存,在提取过程中易使苷类物质分解,因此在提取原存形式的苷时,必须抑制或破坏酶的活性。一 般常用的方法是在中药中加入一定量的碳酸钙,或采用甲醇、乙醇或沸水提取,同时在提取过程中还须尽量避免与酸和碱接触,以免苷类水解,如不加注意,则往往 得到的不是原生苷,而是已水解失去一部分糖的次生苷,甚至苷元。
☆ ☆☆☆考点14:糖的鉴定
1纸色谱:纸层析后糖斑点的显色,可利用它的还原性或形成糠醛后引起的一些呈色反应。常用显色剂有:硝酸银试剂,使还原糖显棕黑色;三苯四氮唑 盐试剂,使单糖和还原性低聚糖呈红色;苯胺-邻苯二甲酸盐试剂,使单糖中的五碳糖和六碳糖所呈颜色略有区别;用3,5-二羟基甲苯-盐酸试剂,使酮糖和含 有酮糖的低聚糖呈红色;过碘酸加联苯胺,使糖、苷和多元醇中有邻二羟基结构者呈蓝底白斑。
2薄层色谱:糖的极性大,在硅胶薄层上进行层析时,点样量不宜过多(一般少于5/g)。纸色谱所用的显色剂同样适用于薄层色谱。
3气相色谱:由于气相色谱灵敏度高,又可同时进行分离和定性定量,所以在糖的鉴定上也用得很普遍。
4离子交换色谱:与气相色谱相比其优点在于不必制成衍生物,而且可以直接用水溶液进行分离。
5液相色谱:备有几种检出器,其中折光检出器的灵敏度为可检出20/g
☆ ☆考点15:苷键构型的决定
糖与糖之间的苷键和糖与非糖部分的苷键,本质上都是缩醛键,也都存在端基碳原子的构型问题。测定苷键构型的问题主要有三种方法,即酶催化水解方法、克分子旋光差法(Klyne法)和NMR法。
1利用酶水解进行测定:如麦芽糖酶能水解的为a-苷键,而杏仁苷酶能水解的为β-苷键。但必须注意并非所有的β-苷键都能为杏仁苷酶所水解。
2利用Klyne经验公式进行计算。
3利用NMR进行测定:在糖的1HNMR谱中,端基质子信号在δ5,0附近,其他一般糖环质子信号在δ35~45间。绝大多数的吡喃糖,如 葡萄糖的优势构象中C2-H为竖键质子,当C1-OH处在横键上(β-D-苷),C1-H和C2-H的两面角近180°J值在6~8HZ间。当C1-OH 处在竖键上(a-D-苷),Cl-H和C2-H的两面夹角近60°。J值在3~4Hz间,因此我们可以根据Cl-H和C2-H的偶合常数来判断苷键构型。
☆ ☆☆考点16:醌类结构与分类
1萘醌类:化合物从结构上考虑可以有α(1,4)、β(1,2)及amphi(2,6)三种类型。萘醌类还原后即得到无色的萘氢醌,后者又可重 新氧化得到萘醌,并重新显色。许多萘醌类化合物具有明显的生物活性,如从中药紫草及软紫草中分得的一系列紫草素及异紫草素衍生物,具有止血、抗炎、抗菌、 抗病毒及抗癌作用,与其清热凉血的药性相符,可认为这些萘醌化合物为紫草的有效成分。
2菲醌类:天然菲醌类衍生物包括邻醌及对醌两种类型。如从中药丹参根中提取得到多种菲醌衍生物,其中丹参醌Ⅰ、丹参醌ⅡA、丹参醌ⅡB、隐丹参 醌、丹参酸甲酯、羟基丹参醌ⅡA等为邻醌类衍生物,而丹参新醌甲、丹参新醌乙、丹参新醌丙则为对醌类化合物。丹参醌类成分具有抗菌及扩张冠状动脉的作用, 由丹参醌ⅡA制得的丹参醌ⅡA磺酸钠注射液已用于临床,用于治疗冠心病、心肌梗死。
3蒽醌类:(1)单蒽核类。(2)双蒽核类:①二蒽酮类衍生物:二蒽酮多以苷的形式存在,若催化加氢还原则生成二分子蒽酮,用FeCl3氧化则 生成二分子蒽醌。如中药大黄、番泻叶中致泻的主要成分番泻苷A、B、C、D等皆为二蒽酮类衍生物。二蒽酮类化合物C10-C10′键易于断裂,生成蒽酮类 化合物。大黄中致泻的主要成分番泻苷A,就是因其在肠内转变为大黄酸蒽酮而发挥作用。②二蒽醌类:蒽醌类脱氢缩合或二蒽酮类氧化均可形成二蒽醌类。天然二 蒽醌类中两个蒽醌环都是相同且对称的,由于空间位阻的相互排斥,使两个蒽环呈反向排列,如山扁豆双醌。③去氢二蒽酮类。④日照蒽酮类。⑤中位苯骈二蒽酮 类。
☆ ☆☆☆考点17:醌类的理化性质
1性状:醌类化合物如无酚羟基,则近乎无色。天然醌类多为有色晶体。颜色由黄、棕、红、苯醌及萘醌多以游离状态存在,而蒽醌类则往往结合成苷,存在于植物体中。
2升华性:游离的醌类多具升华性,小分子的苯醌类及萘醌类具有挥发性,能随水蒸气蒸馏出,可据此进行提取、精制。
3溶解性:游离醌类多溶于乙醇、乙醚、苯、氯仿等有机溶剂,微溶或不溶于水。
4酸碱性:蒽醌类衍生物多具有酚羟基,故具有酸性,易溶于碱性溶剂。醌类衍生物酸性强弱的排列顺序为:含COOH>含2个以上β-OH>含1个β-OH>含2个以上α-OH>含1个α-OH在分离工作中,常采取碱梯度萃取法来分离蒽醌类化合物。
如用碱性不同的水溶液(5%碳酸氢钠溶液、5%碳酸钠溶液、1%氢氧化钠溶液、5%氢氧化钠溶液)依次提取,其结果为酸性较强的化合物(带 COOH或2个β-OH)被碳酸氢钠提出;酸性较弱的化合物(带1个β-OH)被碳酸钠提出;酸性更弱的化合物(带2个或多个α-OH)只能被l%氢氧化 钠提出;酸性最弱的化合物(带1个α-OH)则只能溶于5%氢氧化钠。
☆ ☆☆☆考点18:醌类的显色反应
1Feigl反应:醌类衍生物在碱性条件下加热与醛类、邻二硝基苯反应,生成紫色化合物。醌类在反应中仅起传递电子作用。
2无色亚甲蓝显色试验:无色亚甲蓝乙醇溶液(1mg/ml)专用于检识苯醌及萘醌。样品在白色背景下呈现出蓝色斑点,可与蒽醌类区别。
3Borntrager‘s反应:在碱性溶液中,羟基醌类颜色改变并加深,多呈橙、红、紫红及蓝色。如羟基蒽醌类化合物遇碱显红~紫红色,称为Borntrager’s反应。蒽酚、蒽酮、二蒽酮类化合物需氧化形成蒽醌后才能呈色,其机制是形成了共轭体系。
4Kesting-Craven反应当苯醌及萘醌类化合物的醌环上有未被取代的位置时,在碱性条件下与含活性次甲基试剂,如乙酰乙酸酯、丙二酸酯反应,呈蓝绿色或蓝紫色。蒽醌类化合物因不含有未取代的醌环,故不发生该反应,可用于与苯醌及萘醌类化合物区别。
5与金属离子的反应:蒽醌类化合物如具有a-酚羟基或邻二酚羟基,则可与Pb2+、Mg2+等金属离子形成络合物。
☆ ☆考点19:蒽醌类化合物的分离
1蒽醌苷类和游离蒽醌衍生物的分离:蒽醌苷类与游离蒽醌衍生物的溶解性不一样,前者易溶于水,而后者则易溶于有机溶剂如氯仿等,因而常用与水不混溶的有机溶剂萃取或回流提取蒽醌粗提物,可将两者分开。
2游离蒽衍生物的分离:一般采取溶剂分步结晶法、pH梯度萃取法和色谱法。pH梯度萃取法是最常用的手段,根据蒽醌的α与β位羟基酸性差异及羧 基的有无,使用不同碱性的水溶液,从有机溶剂中提取蒽醌类成分。另外柱色谱法也是常用手段,常用的吸附剂有硅胶、磷酸氢钙、聚酰胺,一般不用氧化铝,以免 发生不可逆的化学吸附。通常酸性强的蒽衍生物被吸附的能力也强,蒽醌类比蒽酚类易被吸附。
3蒽醌苷类的分离:蒽醌苷类水溶性较强,需要结合吸附及分配柱色谱进行分离,常用的载体有聚酰胺、硅胶及葡聚糖凝胶。
☆☆☆☆考点20:香豆素的结构与分类
香豆素的母核为苯骈α-吡喃酮。
1简单香豆素类:是指仅在苯环有取代基的香豆素类。绝大部分香豆素在C-7位都有含氧基团存在,仅少数例外。伞形花内酯,即7-羟基香豆素可以 认为是香豆素类成分的母体。其他C-5、C-6、C-8位都有存在含氧取代的可能,常见的基团有羟基、甲氧基、亚甲二氧基和异戊烯氧基等。
2呋喃香豆素类
(1)6,7-呋喃骈香豆素型(线型):此型以补骨脂内酯为代表,又称补骨脂内酯型。
(2)7,8-呋喃骈香豆素型(角型):此型以白芷内酯为代表。
3吡喃香豆素类
(1)6,7-吡喃骈香豆素(线型):此型以花椒内酯为代表,如美花椒内酯。
(2)78-吡喃骈香豆素(角型):此型以邪蒿内酯为代表,如沙米丁和维斯纳丁。
(3)其他吡喃香豆素:5,6-吡喃骈香豆素如别美花椒内酯;双吡喃香豆素如狄佩它妥内酯。
4异香豆素类:是香豆素的异构体,在植物中存在的多数为二氢异香豆素的衍生物,其代表化合物有茵陈炔内酯、仙鹤草内酯等。
5其他香豆素类:是指a-吡喃酮环上有取代基的香豆素,C-3,C-4上常有苯基、羟基、异戊烯基等取代,如沙葛内酯、黄檀内酯等。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)