人工智能拥有给人类社会带来巨大改变的潜力已成为共识。今年6月初,国家出台《互联网+人工智能三年行动方案》,提出九大工程,人工智能上升为国家战略。沙河IT培训认为作为技术变革的中坚力量,百度正全力实施人工智能战略,加速技术在各行业落地,造福社会。
以汽车行业为例,王劲首提并诠释了“软件定义汽车(SDV)”的概念,他认为,未来汽车的价值将主要由以人工智能为核心的软件技术决定。而在人工智能发展过程中,优秀算法、海量数据和超强计算三位一体,这意味着百度实施人工智能战略,必将对数据中心的计算、存储、运营成本控制诸多能力提出巨大挑战。
据百度系统部高级总监刘超介绍,在过去十年间,百度的服务器集群规模增长了近50倍,在国内形成了华北、华东、华南三大集群,并初步形成全球布局的网络架构,在基础硬件、系统软件、高性能计算、制冷供电等方面,百度技术创新引领着数据中心行业的发展趋势。
如百度主导的整机柜项目“天蝎计划”,这个中国首个开源硬件项目已推出2个版本的技术规范和6项行业标准,整个行业累积部署超过30万个节点;在运营效率上,2023年百度自建数据中心的PUE达到122,位居国内第一,达到全球领先水准。
会上,刘超还发布了百度最新的自主研发成果——X-ManGPUBox,这是全球首个单机支持16块并支持最大扩展到64块GPU的服务器,将为机器学习提供强大计算能力。
刘超指出,应对海量数据存储和处理、支持千亿样本、万亿参数级别的超强计算能力、高效网络设施、数据中心布局XDN化将是未来百度数据中心的发力方向,以助力人工智能技术发展,满足各类应用需求,。
百度人工智能战略实施还需要“云+端”的支持,百度开放云总经理刘炀介绍了百度开放云以及云上的大数据与人工智能。刘炀表示,目前,在大数据和人工智能技术基础上,百度正在利用人工智能实现各种丰富应用。
百度开放云作为承载数十款用户量过亿产品和超百万企业客户的高性能计算平台,是百度将核心资源对外开放,致力于打造的智能云计算服务平台,对外提供满足各行业多层次需求的全系列云产品。以百度开放云为基石,社会各界可以充分利用百度的云计算、大数据、人工智能技术能力,实现价值共赢,获得商业成功。
资讯 咨询机构IDC近日发布的《2017年中国AI基础设施市场跟踪报告》显示,2017年,中国GPU服务器市场迎来爆发式增长,市场规模为5.65亿美元(约合35亿元人民币),同比增长230.7%,约占中国X86服务器市场的6%。
该机构预测,未来五年GPU服务器市场仍将保持高速增长,2017~2022年复合增长率将超过43%。到2022年,GPU服务器的市场规模有望达到中国X86服务器市场整体规模的16%,将直接改变整个服务器市场的格局。
从厂商市场占有率来看,浪潮处于领先位置,曙光和新华三紧随其后。从行业分布来看,互联网是GPU服务器的主要用户群体,提供AIaaS的公有云服务提供商和AI解决方案提供商有望成为未来驱动市场增长的新动力。从市场趋势来看,2017年GPU服务器市场不再是一个小众的市场,几乎所有互联网用户和大量的AI初创公司都开始采购GPU服务器搭建自己的AI平台,主流的公有云厂商也都先后推出自己的AIaaS服务。
从AI生态系统建设来看,Nvidia具有明显优势,其Tesla系列产品在AI基础设施市场占据主导地位,尤其在线下训练场景中几乎垄断了市场。从其产品分布来看,P40和P100占据超过70%的市场份额,分别面向推理和训练工作负载,P4在2017年也取得了快速增长,主要面向1U紧凑型推理计算平台。
该机构中国服务器市场高级研究经理刘旭涛认为:“2017年是中国AI元年,也是AI生态和市场迅速发展的一年。在国家政策和资本的共同推动下,大量AI初创企业涌现、行业应用迅速落地。AI市场的火热推动了以GPU服务器为主的AI基础设施市场取得了爆发式增长,未来伴随AI市场的发展和繁荣,AI基础设施市场仍将保持快速增长。”他认为,目前,AI的应用以线下训练为主,使用者主要是拥有海量数据的用户群体,基础设施以GPU为主。未来,在线推理的应用将更加广泛,除了GPU,FPGA、ASIC等加速计算技术,甚至基于ARM架构的一些新的专用AI芯片都会迎来发展机遇。
云计算(cloud computing)是分布式计算的一种,指的是通过网络“云”将巨大的数据计算处理程序分解成无数个小程序,然后,通过多部服务器组成的系统进行处理和分析这些小程序得到结果并返回给用户。云计算早期,简单地说,就是简单的分布式计算,解决任务分发,并进行计算结果的合并。因而,云计算又称为网格计算。通过这项技术,可以在很短的时间内(几秒种)完成对数以万计的数据的处理,从而达到强大的网络服务。大数据(big data),IT行业术语,是指无法在一定时间范围内用常规软件工具进行捕捉、管理和处理的数据集合,是需要新处理模式才能具有更强的决策力、洞察发现力和流程优化能力的海量、高增长率和多样化的信息资产。
人工智能(Artificial Intelligence),英文缩写为AI。它是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。人工智能技术的细分领域有哪些?
人工智能技术应用的细分领域:深度学习、计算机视觉、智能机器人、虚拟个人助理、自然语言处理—语音识别、自然语言处理—通用、实时语音翻译、情境感知计算、手势控制、视觉内容自动识别、推荐引擎等。
1、深度学习
深度学习作为人工智能领域的一个应用分支,不管是从市面上公司的数量还是投资人投资喜好的角度来说,都是一重要应用领域。说到深度学习,大家第一个想到的肯定是AlphaGo,通过一次又一次的学习、更新算法,最终在人机大战中打败围棋大师李世石。百度的机器人“小度”多次参加最强大脑的“人机大战”,并取得胜利,亦是深度学习的结果。
深度学习的技术原理:
1构建一个网络并且随机初始化所有连接的权重;
2将大量的数据情况输出到这个网络中;
3网络处理这些动作并且进行学习;
4如果这个动作符合指定的动作,将会增强权重,如果不符合,将会降低权重;
5系统通过如上过程调整权重;
6在成千上万次的学习之后,超过人类的表现;
2、计算机视觉
计算机视觉是指计算机从图像中识别出物体、场景和活动的能力。计算机视觉有着广泛的细分应用,其中包括,医疗成像分析被用来提高疾病的预测、诊断和治疗;人脸识别被支付宝或者网上一些自助服务用来自动识别照片里的人物。同时在安防及监控领域,也有很多的应用……
计算机视觉的技术原理:
计算机视觉技术运用由图像处理 *** 作及其他技术所组成的序列来将图像分析任务分解为便于管理的小块任务。比如,一些技术能够从图像中检测到物体的边缘及纹理。分类技术可被用作确定识别到的特征是否能够代表系统已知的一类物体。
3、语音识别
语音识别技术最通俗易懂的讲法就是语音转化为文字,并对其进行识别认知和处理。语音识别的主要应用包括医疗听写、语音书写、电脑系统声控、电话客服等。
语音识别技术原理:
1、对声音进行处理,使用移动窗函数对声音进行分帧;
2、声音被分帧后,变为很多波形,需要将波形做声学体征提取,变为状态;
3、特征提起之后,声音就变成了一个N行、N列的矩阵。然后通过音素组合成单词;
4、虚拟个人助理
说到虚拟个人助理,可能大家脑子里还没有具体的概念。但是说到Siri,你肯定就能立马明白什么是虚拟个人助理。除了Siri之外,Windows 10的Cortana也是典型代表。
虚拟个人助理技术原理:(以Siri为例)
1、用户对着Siri说话后,语音将立即被编码,并转换成一个压缩数字文件,该文件包含了用户语音的相关信息;
2、由于用户手机处于开机状态,语音信号将被转入用户所使用移动运营商的基站当中,然后再通过一系列固定电线发送至用户的互联网服务供应商(ISP),该ISP拥有云计算服务器;
3、该服务器中的内置系列模块,将通过技术手段来识别用户刚才说过的内容。
总而言之,Siri等虚拟助理软件的工作原理就是“本地语音识别+云计算服务”。
5、语言处理
自然语言处理(NPL),像计算机视觉技术一样,将各种有助于实现目标的多种技术进行了融合,实现人机间自然语言通信。
语言处理技术原理:
1、汉字编码词法分析;
2、句法分析;
3、语义分析;
4、文本生成;
5、语音识别;
6、智能机器人
智能机器人在生活中随处可见,扫地机器人、陪伴机器人……这些机器人不管是跟人语音聊天,还是自主定位导航行走、安防监控等,都离不开人工智能技术的支持。
智能机器人技术原理:
人工智能技术把机器视觉、自动规划等认知技术、各种传感器整合到机器人身上,使得机器人拥有判断、决策的能力,能在各种不同的环境中处理不同的任务。
智能穿戴设备、智能家电、智能出行或者无人机设备其实都是类似的原理。
7、引擎推荐
不知道大家现在上网有没有这样的体验,那就是网站会根据你之前浏览过的页面、搜索过的关键字推送给你一些相关的网站内容。这其实就是引擎推荐技术的一种表现。
Google为什么会做免费搜索引擎,目的就是为了搜集大量的自然搜索数据,丰富他的大数据数据库,为后面的人工智能数据库做准备。
引擎推荐技术原理:
推荐引擎是基于用户的行为、属性(用户浏览网站产生的数据),通过算法分析和处理,主动发现用户当前或潜在需求,并主动推送信息给用户的信息网络。快速推荐给用户信息,提高浏览效率和转化率。
关于人工智能的展望
除了上面的应用之外,人工智能技术肯定会朝着越来越多的分支领域发展。医疗、教育、金融、衣食住行等等涉及人类生活的各个方面都会有所渗透。
当然,人工智能的迅速发展必然会带来一些问题。比如有人鼓吹人工智能万能、也有人说人工智能会对人类造成威胁 ,或者受市场利益和趋势的驱动,涌现大量跟人工智能沾边的公司,但却没有实际应用场景,过分吹嘘概念。
SLAMTEC认为,不管人工智能技术如何迅速发展,作为一家高科技公司,都应当基于目前人工智能的技术短板,踏踏实实做研究,找方法来弥补、提升技术。作为一家拥有7年自主定位导航技术的公司,也将会一直秉承着“慧联世界”愿景,推动服务机器人和人工智能在智能机器人上的发展。
希望我的回答可以帮到您哦
AI2021和AI2022的区别如下:
自2018年以来连续第四年发布。
报告从宏观经济、技术成熟度、AI劳动供给、行业和地域四大方面进行综合考量,评估中国人工智能发展现状,为推动产业AI化发展提供参考和行动指南。
算力基础设施建设体现一个地区对人工智能的综合投入程度,首次被作为地域评估的考虑因素。
报告指出,AI芯片呈现多元化发展趋势,AI芯片算力持续提升满足模型规模增长态势;中国AI服务器市场快速增长,中国厂商领跑全球,2020年全球AI服务器厂商浪潮、DELL、HPE市场份额位列前三,未来AI服务器将朝着多元开放、绿色节能的方向发展。AI与云的融合是必然趋势,预计到2025年,中国人工智能服务器公有云的占比将超过50%,私有云、政务云、行业云等也在蓬勃发展,混合IT是企业首选。算法模型发展愈加复杂,巨量模型将是规模化创新的基础,“源10”等巨量模型的出现,让构建大模型、提升AI处理性能成为发展趋势;应用场景已经从碎片化过渡到深度融合的一体化,从单点应用场景转换为多元化的应用场景。相比2020年,人工智能在金融、制造、能源 、公共事业和交通等行业体现的推动作用尤为显著;以智算中心为代表的算力基础设施,通过提供公共的算力、数据及算法服务,让算力服务易用,解决算力服务的供给问题。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)