人工智能化在电力系统中的应用分析
随着人工智能化技术在世界范围内的快速发展,很多研究人员已经展开针对人工智能化在电气自动化应用方面的研究,也取得了一定的成果,积极运用这些新成果无疑有利于电气自动化学科的发展。
电气自动化应用人工智能化的常用的方法有专家系统、人工神经网络、模糊集理论等。
1 人工智能化应用于电气优化设计中
在设计电气类设备类的工作是一个极为复杂的工作,传统化的方式是采用简易的实验方式方法和具有经验的老师傅用手工方式来完成的。
这不仅需要会电气、电路等专业的知识内容,还要将长时间积累的设计中的经验运用在里面,即使这样也很难达到最优的效果。
随着智能化发展以及计算机的发展,电气逐渐由手工设计向计算机辅助设计不断转变,使开发产品的周期大大减少。
人工智能化的出现,使得计算机设计系统也在不断的更新,整体产品无论从研发、设计到成品等都得到了全面的提高。
人工智能化常用方法中,遗传算法是一种比较先进的优化算法,对于产品的优化设计是很适合的,因此对于电气设计往往都是采用这样的方式方法或加以改进。
2 人工智能化应用于电气控制中
在传统电气自动化控制中,其 *** 作过程往往有着更为严格的要求,日常的 *** 作过程步骤也十分繁琐,需要很大的人力投入,过程中无法避免的会出现一些人为差错。
而人工智能化技术是依赖于计算机的先前设定好的程序的控制来进行正常的工作。
在智能化的机器内部会由于各个环节的要求,同时有几个不同编程的程序来控制整个生产过程,人工智能化能实现对各个环节的严谨控制掌握,并能及时对运行数据进行分析并与理论情况对比,最大限度限制差错的出现,而且还能对出现的差错及时警报。
综上,人工智能技术,在改善电气自动化的 *** 作效率,简化 *** 作流程,降低电气自动化控制中人力工作量方面有着显著的成果。
3人工智能化应用于电气故障诊断中
所谓电气故障诊断,就是通过电气设备运行中的相关信息来识别其技术状态是否正常,确定故障的性质与部位,寻找故障起因,预报故障趋势,并提出相应对策;它以故障机理和技术检测为基础,以信号处理和模式识别为其基本理论与方法。
随着现代电气设备和系统日益复杂化,电气设备的可靠性、可用性、可维修性与安全性的问题日益突出,从而促进了人们对电气设备故障机理及诊断技术的研究。
并且随着计算机技术及数字信号处理技术的迅速发展,人工智能化诊断技术在电气故障中应用越来越广泛。
专家系统、模糊理论在人工智能化电气设备故障诊断中应用比较广泛。
变压器作为电设备中最为常见的设备,其出故障时传统的诊断方法是利用变压器分解出来的油气体,具有较低的准确率,而人工智能智能化监测把专家系统、模糊理论两个系统结合起来,综合诊断变压器的故障,具有较高的准确率,在消除故障隐患方面效果比传统诊断要好得多。
给你解释一下这些术语:
云计算:就是个炒得很热的商业概念,其实说白了就是将计算任务转移到服务器端,用户只需要个显示器就行了,不过服务器的计算资源可以转包。当然,要想大规模商业化,这里还有些问题,特别是隐私保护问题。
大数据:说白了就是数据太多了。如今几兆的数据在20年前也是大数据。但如今所说的大数据特殊在哪呢?如今的问题是数据实在是太多了,这已经超过了传统计算机的处理能力(区别与量子计算机),所以对于大数据我们不得不用一些折衷的办法(比如数据挖掘),就是说没必要所有数据都需要精确管理,实际上有效数据很有限,用数据挖掘的方法把这些有限的知识提取出来就行了。·此外,数据抽样,数据压缩也是解决大数据问题的一些策略。
数据挖掘:从数据中提取潜在知识,这些知识可以描述或者预测数据的特性。有代表性的数据挖掘任务包括关联规则分析、数据分类、数据聚类等,这些你在任一本数据挖掘教材都可以了解。下面我说说和大数据的区别:数据挖掘只是大数据处理的一个方法。马云所说的大数据,或者如今商业领域所说的大数据,实际上指的就是数据挖掘,其实真正所谓大数据,或者Science杂志中提到的大数据,或者奥巴马提出的大数据发展战略,我的理解是,这些都远远大于数据挖掘的范畴,当然数据挖掘是其中很重要的一个方法。真正目的是如何将大数据进行有效管理。
机器学习:这个词很虚,泛指了一大类计算机算法。重点是学习这个词,如果想让计算机有效学习,目前绝大多数方法都采用了迭代的方法。所以在科研界,只要是采用了这种迭代并不断逼近的策略,一般都可以归到机器学习的范畴。此外,所谓学习,肯定要知道学什么,这就是所谓训练集,从训练集数据中计算机要学到其中的某个一般规律,然后用一些别的数据(即测试集)来看看学得好不好,之后才能用于实际应用。所以,选取合适的训练集也是个学问。
模式识别:意思就是模式的识别。模式多种多样,可以是语言,可以是图像,可以是事物一些有意义的模块,这些都算。所以总体来说,模式识别这个词我是觉得有点虚,倒是具体的人脸图像识别、声音识别等,这些倒是挺实在的。也许是我不太了解吧。
另外说说你的其他问题。
传统分析方法不包括数据挖掘。对于数据分析这块我不是很了解,不过可以肯定的是,传统分析都有一定的分析方向,比如我就想知道这两个商品的关联情况,那我查查数据库就行了。数据挖掘虽说有些历史,不过也挺时髦的,它是自动将那些关联程度大的商品告诉你,这期间不需要用户指定数据分析的具体对象。
如果想应对大数据时代,数据挖掘这门课是少不了的。此外对数据库,特别是并行数据库、分布式数据库,最好了解点。至于机器学习和模式识别,这些总的来说和数据挖掘关系不太大,除了一些特殊的领域外。
总之,概念挺热,但大数据还很不成熟,无论从研究上还是商业化上。我目前在作大数据背景下的算法研究,说实话,目前基本没有拓展性非常强的算法,所以未来大数据的发展方向,我也挺迷茫。
PS:将数据挖掘应用于商业,最最重要的就是如何确定挖掘角度,这需要你对具体应用的领域知识非常了解,需要你有非常敏锐的眼光。至于数据挖掘的具体算法,这些就交给我们专门搞研究的吧!(对算法的理解也很重要,这可以把算法拓展到你的应用领域)
人工智能的发展:
回顾人工智能的发展可以有以下四个时期:孕育,形成,知识运用,综合集成四个阶段。
孕育期:一般认为人工智能的最早工作是Warre基本出发点。Mcculloch跟Walter Pitts 完成的。他们提出一套人工神经元模型,两名普林顿大学数学系的研究生在1951年建造了第一台神经元网络计算机。不少早期工作可以被当做人工智能,古希腊的亚里士多德创立的演绎法,三段论的至今仍然是演绎推理的基本出发点。
形成期:人工智能诞生于1956年的一次历史性聚会。几位来自美国的数学,神经学,心理学,信息科学和计算机科学的杰出科学家齐聚一堂,由麦卡锡提出了“人工智能(AI)”
这一概念。会议过后,各地的科学家、学者纷纷研究相关知识,“人工智能”这一学科以及相关研究如雨后春笋一般形成。1969年的国际人工智能联合会议标志着人工智能得到国际的认可。
知识应用期:1977年费根鲍姆在第五届国际人工智能大会上提出了知识工程的概念。从此之后,各类专家系统得以发展,大量的商品化专家系统和智能系统纷纷推出。专家系统的发展,也是得人工智能的发展范围扩大到了人类各个领域,并产生了巨大的经济效益。
但是专家系统发展过程中也存在很多缺陷,应用领域窄,缺乏常识性知识,知识获取困难,不能访问现存的数据库等问题被逐渐暴露出来,人工智能面临着考验。
综合形成期,在专家系统方面,从20世纪80年代末开始逐步向多技术,多方法的综合集成与多领域的综合应用型发展。大型专家系统开始采用了人工智能的多种语言,多种知识表示方法,多种推理机制和多种在控制策略相结合的方式,人工智能的发展进入综合形成期。
目前,人工智能技术正在向大型分布式人工智能,大型分布式多专家协同系统,并行推理,多种专家系统开发工具,大型分布式人工开发环境和分布式环境下的多智能协同系统等方向发展。但是从目前来看,无论是人工智能理论还是实践都不够成熟,人工智能研究仍然需要科研工作者长期摸索。
人工智能的应用:
(1)、虚拟各人助理
目前市面上的人工智能助理如:Siri,小娜等。个人助理能够帮助用户完成多项任务,多项服务,其推动力是人工智能技术。现阶段的人工助理一般具有基于上下文的对话能力,可以实现简单的人机对话,回答一些简单的问题。个人助理的应用包括语音识别,图像识别,深度学习等技术,其工作原理是“语音识别+云计算服务”。
(2)、自动驾驶
谷歌公司一直致力于自动驾驶汽车的研究,2012年4月。谷歌公司宣布自动驾驶汽车已经行驶20万公里,这一数据已经接近汽车的最大里程数。我国自动驾驶技术的研究同样取得振奋人心的成果。2017年由海梁科技与深圳巴士集团等联合打造的自动驾驶客运巴士,正式进行线路的信息采集和试运行。
(3)、智慧医疗
医疗一直是关系到国际民生的重要范畴。随着专家系统的不断发展完善,已有实例表明,人工智能可参与到医疗建设中。Watson[5]是IBM公司研发的采用认知计算系统的人工智能平台,watson肿瘤系统是其产品之一,可以作为辅助诊疗手段,与医院数据对接,实现病例数据的信息共享,还可以为临床医生在诊断过程中推荐诊疗方案,苏北人民医院2017年正式引入此系统,开启了智慧医疗的新时代。
我国人工智能发展趋势与展望:
人工智能技术发展至今60多年,其概念已经逐渐清晰,在生物,医疗,交通等领域孕育出了突破性的成果,但是人工智能技术能否发展到人类的水平仍然不能给出确切的答案。
目前人工智能面临的问题主要是:
(1)、体系结构受限
受限于冯诺依曼体系结构,目前人工智能系统在感知,认识方面无法突破瓶颈。这主要是由于传统的冯诺依曼体系结构采用的是存储程序的方法,程序是事先设定的,无法随着外界的改变而改变,这也是限制人工智能发展的关键。不过,我们有理由相信,在不久的未来能够克服这种制约。
(2)、社会问题困扰
如果人工智能真的发展到与人类智慧媲美的程度,又会引发一系列的问题。一方面心理学上,“恐怖谷”理论就是假如机器人接近人类的时候,我们会对其产生莫名的厌恶和惧怕。另一方面,人工智能带来的社会问题同样困扰着人类,以自动驾驶汽车为例,3-18美国自动驾驶车辆车祸致人死亡的事件给自动驾驶技术的发展带来不小的冲击,事故责任的划分成为一大难题。
目前人工智能的发展,主要是在弱人工智能发展并取得显著的成果,在强人工智能的研究上仍在开展,存在很多问题,有很大的发展空间,从目前的一些前瞻性研究可以看出人工智能可能会向以下几个方面发展:模糊处理,并行化,神经网络和机器情感。人工智能的下一个突破可能是赋予计算机情感能力。
人工智能的核心是机器学习,广泛应用到图像识别、市场分析、故障检测、自然语言处理、医疗诊断等场景中。这也意味着人工智能服务器将会迎来一定的需求增长。如果需要这样的服务器,可以去十次方算力租赁平台了解下。作者 | 宫学源
人工智能技术的应用,或许能帮助蓝色星球的科学家们摆脱无穷无尽实验的痛苦,加速重大科学理论的发现,将人类文明提升到新的台阶。
——题记
人工智能技术的潜力大家都有目共睹,但未来人工智能可以用来做什么,将会给人类社会带来多大的变革,也在考验我们的想象力。
尽管人工智能技术还处在初级发展阶段,但它现有的能力也足以改变众多领域,尤其是那些有着大量数据却无法有效利用的领域。
1 人工智能推动基础科学理论突破实际上,材料、化学、物理等基础科学领域的研究过程中充满了“大数据”,从设计、实验、测试到证明等环节,科学家们都离不开数据的搜集、选择和分析。
由于物理、化学或力学规律的存在,这些领域的数据往往都是结构化的、高质量的以及可标注的。
人工智能技术(机器学习算法)擅长在海量数据中寻找“隐藏”的因果关系,能够快速处理科研中的结构化数据,因此得到了科研工作者的广泛关注。
人工智能在材料、化学、物理等领域的研究上展现出巨大优势,正在引领基础科研的“后现代化”。
以物理领域为例,人工智能的应用给粒子物理、空间物理等研究带来了前所未有的机遇。为寻找希格斯玻色子(上帝粒子),进一步理解物质的微观组成,欧洲核子研究中心(CERN)主导开发了大型强子对撞机(LHC)。
LHC是目前世界上最大的粒子加速,它每秒可产生一百万吉字节(GB)的数据,一小时内积累的数据竟然与Facebook一年的数据量相当。
有一些研究人员就想到,利用专用的硬件和软件,通过机器学习技术来实时决定哪些数据需要保存,哪些数据可以丢弃。
事实证明,机器学习算法可以至少做出其中70%的决定,能够大大减少人类科学家的工作量。
尽管人工智能商业化发展更容易受关注,但人工智能在基础科研中的应用,却更加激动人心。
因为社会生产力的变革,归根结底在于基础科研的进一步突破。
我们或许再也回不到有着牛顿、麦克斯韦和爱因斯坦等科学“巨人”的时代。
在那个时代,“巨人”们可以凭借着超越时代的智慧,在纸张上书写出简洁优美的定理,或者设计出轰动世界的实验。
像这样做出伟大工作的机会或许不多了,在这个时代,更多需要的是通过大量实验数据来获取真理的工作。
大到宇宙起源的探索,小到蛋白质分子的折叠,都离不开一批又一批科学家们前赴后继、执着探索。
人工智能技术的应用,或许能帮助蓝色星球的科学家们摆脱无穷无尽实验的痛苦,加速重大科学理论的发现,将人类文明提升到新的台阶。
2 人工智能推动社会生产效率快速提升人工智能无疑是计算机应用的最高目标和终极愿景:
彻底将人类从重复机械劳动中解放出来,让人们从事真正符合人类智能水平、充满创造性的工作。
在60年的人工智能发展史中,已经诞生了机器翻译、图像识别、语音助手和个性推荐等影响深远的应用,人们的生活在不知不觉中已经发生了巨大变化。
未来,人工智能应用场景进一步延伸,是否能够带来社会生产效率的极大提升,引领人类进入新时代?
为了探索这一问题,曾在谷歌和百度担任高管的吴恩达于2017年成立了一家立足于解决 AI 转型问题的公司 Landing ai。
吴恩达通过一篇文章和一段视频在个人社交网站上宣布了该公司的成立,并表示希望人工智能能够改变人类的衣食住行等方方面面的生活,让人们从重复性劳动的精神苦役中解脱。
Landing的中文含义是“落地”,这家公司的目标是帮助传统企业用算法来降低成本、提升质量管理水平、消除供应链瓶颈等等。
截至目前,Landing ai已经选择了两个落地领域,分别是制造业和农业。
Landing ai最先与制造业巨头富士康达合作。
Landing ai尝试利用自动视觉检测、监督式学习和预测等技术,帮助富士康向智能制造、人工智能和大数据迈进,提升制造过程中AI应用的层次。
吴恩达认为,人工智能对制造业带来的影响将如同当初发明电力般强大,人工智能技术很适合解决目前制造业面临的一些挑战,如质量和产出不稳定、生产线设计d性不够、产能管理跟不上以及生产成本不断上涨等。
目前,工业互联网、智能制造和工业40等概念已经深入人心,传统企业都在向智能化、数据化转型,但生产过程中获取的大量数据如何应用又成了新的问题。Landing ai与富士康的合作,或许将给传统制造的从业者带来新的启示。
当然,制造业的核心竞争力还在于制造业本身,比如车床的精度、热处理炉的温度控制能力等等,农业的核心竞争力也在于农业本身,比如育种技术、转基因技术等等。
人工智能技术的主要价值在于提升决策能力,进一步提升生产效率,以及降低人的重复性劳动等方面,这就是人工智能为什么可以“赋能”各个行业的原因。
3 人工智能将有效改善人类的生存空间自第一次工业革命以来,人类活动对自然界造成的影响越来越大,日益增长的资源需求使得土地利用情况产生巨大变化,污染愈发严重,生物多样性锐减,人类的生存空间变得越来越恶劣。
进入人工智能时代后,怎样更好地利用大数据和机器学习等前沿技术,为环保和绿色产业赋能,成为了政府、科学家、公众以及企业的关注焦点。
在能源利用方面,谷歌旗下的DeepMind无疑走在了最前面。
2016年开始,DeepMind将人工智能工具引入到谷歌数据中心,帮助这家科技巨头节省能源开支。
DeepMind利用神经网络的识别模式系统来预测电量的变化,并采用人工智能技术 *** 控计算机服务器和相关散热系统,成功帮助谷歌节省了40%的能源,将谷歌整体能效提升了15%。
2018年后,DeepMind更是将“触手”伸向了清洁能源领域。我们都知道,风力发电因为有较大的波动性和不可预测性,因而难以并入电网,无法有效利用。
DeepMind利用天气预报、气象观测等数据训练神经网络模型,可以提供36小时后的风力预测,从而让农场的风力发电变得能够预测。
一旦风力发电可以预测,电厂就能有充裕的时间启动需要较长时间才能上线的发电手段,与风力互补。如此一来,风电并网难的问题就可轻松解决。
DeepMind预测的风力发电量和实际发电量对比
在自然环境保护方面,微软的“人工智能地球计划(AI of Earth)”则为大家做出了表率。
这一计划于2017年7月启动,旨在借助云计算、物联网和AI技术,保护和维持地球及其自然资源,通过资助、培训和深入合作的方式,向水资源、农业、生物多样性和气候变化等领域的个人和组织机构提供支持。
例如,“SilviaTerra”项目通过使用Microsoft Azure、高分辨卫星图像和美国林务局的现场数据来训练机器学习模型,实现对森林的监测;“WildMe”项目通过使用计算机视觉和深度学习算法,可对濒临灭绝的动物进行识别;“FarmBeats”项目在户外环境下可以通过传感器、无人机以及其它设备改进数据采集,进而提高农业的可持续性。
在前三次工业革命中,科学技术进步给人们带来极大生活便利的同时,也带来了气候变化、生物多样性退化、大气与海洋污染等棘手的自然环境问题,人类的生存环境正逐渐变得恶劣。
从表面上看,似乎发达经济体的自然环境已经改善了,但这种改善是以转移污染、破坏发展中国家自然环境为代价的,世界整体的自然环境状况依然不容乐观。
一直以来,人们寄希望于未来的科学技术进步能够解决当下的自然环境问题,而人工智能技术的出现点燃了这一希望。
一旦人工智能技术可以加速基础科学理论的突破,实现生产效率的大幅提升,有效改善人类的生存空间,一切发展与自然环境的问题也就迎刃而解。
4 总 结
站在2019年看人工智能,不免感到几丝寒意。人工智能算法没有明显突破,鲁棒性差、算法黑箱等问题依然突出,部分商业化落地也不及预期,一些专家学者开始担心人工智能将迎来新的“寒冬”。
但若站在未来回顾人工智能,当前所有的担忧将仅仅是一个个小插曲。
即便是目前,人工智能技术的潜力也远远未终结。
人工智能即将带来的变革,仍将会超乎大部分人的想象。
近年来,许多行业都已切实感受到人工智能带来的颠覆,包括金融、制造、教育、医疗和交通等等。
但人工智能的价值维度还有很多,加速基础科学研究、提升社会生产效率和改善人类生存空间也只是其中的几个方面,我们不妨先提升一下自己的想象力。
人工智能将为人类带来怎样的变革,让我们拭目以待吧!
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)