物联网:为什么NB-IoT、LoRa都玩不转?

物联网:为什么NB-IoT、LoRa都玩不转?,第1张

说起物联网(Internet of Things, IoT),估计很多人都耳熟能详,因为我们早就在各种各样的媒体中看到过好多次这个名词了。

按照中国传统观点,万物实际上是有着天然的联系的,那么人类为何又要画蛇添足般地再把他们连接起来呢?原因很简单, 万物的天然联系是依靠的自然规律,而人类并不能控制他们,而物联网让万物以人类的意愿进行连接,从而让人类可以控制他们 。物联网,无非是又一个人类征服和控制自然的尝试而已。只要万物能够互联并且通过有效的手段在需要的时候知道他们的状态,从而采用有效的手段进行干预,那么人类就有了对万物的相当程度的控制权。

这给了人们很大的想象空间,因此,也吸引了大量的淘金者,试图分享这样一块看起来巨大无比的蛋糕。 但这么多年来,现实并不乐观。

根据我的了解——可能并不准确——我感觉物联网现在处于一个比较尴尬的阶段。 一方面,物联网的呼声很大,人们寄予很大的期望;但另一方面,市场的反响并不热烈,本来应该跟人们的生活息息相关的物联网,似乎在现实中并没有被人们所感知。我观察到的现实就不很乐观。 算得上物联网的智能家居曲高和寡,国内力推的NB-IoT雷声大雨点小,LoRa使用的主流频段在国内被事实上禁用, Zigbee等覆盖范围过小……

在这里,我想梳理一下物联网在国内发展的现状,以便于更好地定位和找出问题所在。

物联网可以看做是互联网的升级版本,传统的互联网连接的是人;物联网不光连接人,还要连接物,除了人类的互动外,还需要让人能够更好地把控物。 人是自带智能的,所以传统的互联网的重点在于连接,只要有连接,人们就会互动,产生内容等,对网络的智能要求就不高;但物联网连接的是物,物本身不具备智能, 需要通过人来控制或者智能系统来自动控制。

物联网也是近十年来出现频率很高的智慧某某(例如智慧城市,智慧楼宇,智慧园区,智慧安防等)的基础设施。 什么是智慧?我认为就是能够根据某个特定的需求和目标,自主动态调节现有状态的能力 。这需要至少有两个部分构成,一是要有数据分析和处理的“大脑”部分,二是要有数据收集和指令执行的“躯体”部分。 我们往往把狭义的躯体部分作为狭义的物联网, 也可以称为物联网10, 实现了物体的初步连接和数据收集和反馈能力,但这套系统要想实用,实际上离不开人,因为数据的分析和控制指令的下达还是需要人来做;而大脑+躯体才是真正智慧的物联网,在我看来这才是能够给人类带来很大便利的物联网,才具备大范围应用的技术基础, 可以把这称为物联网20。

现阶段的物联网还是停留在由人控制的阶段,也就是10时代,这个阶段对数据的处理存在瓶颈,因此,并不适合复杂的应用,也不适合大范围使用。因此我们可以看到,应用比较广泛的应用也就是那少数的简单应用,如抄表、环境监测、家电控制等。云计算、大数据、机器学习、人工智能等技术是近几年的IT领域的热点,进展也非常迅速,他们的发展为物联网向20阶段进化提供了坚实的基础。

我们日常生活,现有的已经足够很好地满足人们的需求了;物联网,只是人们对更高生活水平的追求的产物,并且不是必需的;对于非必需品来说,要想普及需要足够的性价比或者就索性走高端路线。但从目前的物联网市场看,由于缺少比较成熟的家用物联网方案,因此并不能大规模使用,这导致物联网应用起来成本比较高,在家居中只有高端住宅才可能会使用,占比很少,家居物联网在这种初级阶段必须得要走高端路线,当然这也符合很多新事物的初始状况特征。

物联网在工商业中也有一些应用,例如RFID领域,我们已经可以在一些商店中看到。其他还有很多物联网项目,多数隐藏在智慧某某的名头之下,现阶段,只要是冠以智慧的项目,其造价一般会令人咂舌。 因此,在性价比不高的情况下,人们使用他的积极性自然不高了。

中国运营商去年决定要大力推广NB-IoT,他们试图提升性价比,因此希望设备和解决方案提供商们能够以较低的价格提供相关产品,由于其体量,确实有部分供应商愿意以接近成本价的价格向其提供产品;但即使是这样,愿意使用的用户也不多,这让供应商的积极性大大降低,因为根本就无利可图。也因为此,NB-IoT的这一波推广活动实际上到目前看来是比较失败的。

从连接介质来看,物联网分为有线和无线两种,考虑到实际部署的难度,无线方式显然更有机会会成为主流的连接方式。

从终端和因特网连接关系来看,物联网也可以划分为两种方式:一种是直接和因特网连接,例如NB-IoT、2/3/4G蜂窝网络、eMTC等; 另一种是通过网关间接和因特网连接,例如LoRa、SigFox、ZigBee、BLE、WiFi等。不同的协议都是针对不同的应用场景设计的,因此在实际使用中都有其优缺点。例如我们常用的WiFi,要保证速率和可靠性,因此覆盖距离不够长,连接不可靠; NB-IoT主要用于低速率物联网应用,能够直接联网,但速率低, 用户连接数少; LoRa的覆盖比较广,但速率低,用户连接数也有限制……

因此,实际部署时需要根据不同的应用场景选择不同的技术、标准以及相应的设备,而在现场实施的时候又会有很多意想不到的困难。无线部署也需要做网优等工作,对实施人员的要求比较高。 这些都增大了物联网的部署难度。

由于物联网一般使用无线技术,那么频谱资源就是物联网的一个非常核心的资源。频谱资源时稀缺的,因为有太多的地方需要这类资源。例如我们的移动电话、微波通信、卫星通信、应急通信、无线WiFi等等。这些资源由于其稀缺性,需要统一的规划。而这在不同的国家也面临着不同的状况。

例如现在比较火热的LoRa,阿里巴巴、腾讯等互联网企业刚刚加入该标准联盟,结果国家的新的频谱规划就给予他们致命一击,LoRa所使用的sub-1G的频谱资源实际上是不开放的。

目前在全球,唯一明确的民用频段就是24GHz,也就是WiFi、蓝牙等使用的频段。但这个频段的问题是与低频段的无线电波相比,越障能力比较差,因此覆盖能力不强。而又由于太多的民用无线设备都是用这个频段,导致这个频段的信号比较“脏”,收到的干扰比较大。 现有的使用这个频段的蓝牙、WiFi协议本身也是为了IP宽带连接而设计的,专注于速率,所以也导致覆盖范围一般不超过100米,并且连接数量有着很大的限制。 因此,要想避免频谱资源的政策风险,就只能使用24GHz这个频段 ,那么如何在这样的情况下增加无线覆盖的范围,提升覆盖距离,就是物联网公司需要解决的一个大问题。

比较有实际应用意义的物联网的规模需要达到一定的程度,也就是终端要足够多,很多地方并不具备电源接入的条件,那么就需要终端的功耗要足够低或者索性无源。

无源当然是最佳的方式,目前的解决方案是要加储能电路,但这种电量非常微小,在现有的技术条件下,覆盖范围和传输能力都受到严重的制约,只能适应很少的一部分场景。因此,大多数情况还是需要有源的终端,这就需要功耗尽可能地低了。 功耗问题可能是目前物联网面临的主要问题之一。

例如在智慧停车之类的项目中,有部分方案是用NB-IoT实现的。这个标准由于使用了蜂窝技术,只有运营商具备掌控的能力,所以电信运营商和设备商都非常有热情去推广,也号称一块电池可以用十年,看起来功耗似乎很低,但那是有前提条件的,就是它平时处于睡眠状态,每天主动醒来一次上传一次数据,在这样的情况下才可能坚持十年。 但用于停车就得频频被唤醒,因此在这个场景中使用就非常耗电。根据实际使用的经验,差不多5个月左右就得去更换电池了。这带来极大的维护工作量,而且电池的成本本身也非常高。因此,至少在停车这种方案中,NB-IoT并不是一个好的选择。如果用LoRa呢?在停车中也有应用,表现好一点,能够达到一年多的使用时间而不用换电池。而一般里面模块和芯片的寿命在5年以上,也就是说,在终端设备的生命周期里,需要更换多次电池,每一次更换电池实际上跟新开工一个项目工作量差不多多少。因此,我们不能说这种状况是令人满意的。

所以,如果能够解决有源终端的功耗难题,不光可以大大减轻日后的维护工作量,还可以大大降低终端的成本,这是因为在实际应用中,电池是物联网终端的主要成本之一。

技术本身是没有国界的,但遗憾的是我们并不生存在一个理想的世界里,我们的现实世界依然存在着各种各样的利益群体,有的时候出于自身利益的考虑,作为体现现代竞争力的物联网技术就要受到一些因素的制约。国家就是一个典型的利益群体,而国家安全往往是这个群体的最高利益之一。信息安全是国家安全的一个重要方面,物联网搜集各种各样的信息,这些信息有的时候就是非常机密的情报,不方便被其他利益团体所获知,因此,在物联网标准方面,在一开始就要注意这个方面。

LoRa是美国公司Semtech所提出的一个物联网标准,也是目前比较主流的标准。这个标准对标的是SigFox——一个欧洲的私人公司封闭的物联网标准,但SigFox用自己的标准建了一个覆盖很广的网络,对外运营物联网业务,可以叫做物联网供应商;而LoRa是半开放的标准,允许用户使用这种技术进行模块和终端产品的开发,并用这些产品组建自己的LoRa物联网,虽然相比于市场上主流的其他方案,看起来价格并不贵,但标准、芯片等核心部分过分集中于美国的供应商Semtech上,在特定的时候这就是一个很大的风险。

因此,无论是物联网方案提供商、物联网产品开发商,还是用户,在选择物联网标准的时候要考虑到这个问题。当然,对于小规模的民用应用,采用什么标准问题不大,但对于军用、大规模应用来说,不考虑这个因素将可能让投资全部打水漂。 最近的无线电频谱的一个征求意见的文件就让某国外标准被判了死刑,即使我们最大的两个互联网公司刚刚加入了这个阵营也是无可奈何。

NB-IoT是中国特别是运营商和设备提供商力推的标准,但它的问题在于功耗较高、用户容量有限,所以,在很多场景里并不适合。因此,中国还需要更多的物联网标准,来补充NB-IoT的不足。

频段方面,ZETA工作在1GHz以下的非授权频段(中国主要使用470-518MHz),无需申请即可进行网络的建设,故在应用时不需要额外支付通讯费用,这也成了相关企业推广时的一大卖点。非授权频段是指开放性的频段,你用我用都可以,不等于不安全的频段,这点需要注意。

——更多本行业研究分析详见前瞻产业研究院《中国物联网行业应用领域市场需求与投资预测分析报告》。

行业进入快速发展期

物联网最早于20世纪90年代被提及并确认概念,在1995年至2005年间经历了萌芽期。2005年,国际电信联盟对物联网的概念进行了拓展,物联网行业进入初步发展期。2009年,中国、欧盟、美国对于物联网都提出国家战略层面的行动计划,全球物联网行业发展进入快速发展阶段。

全球物联网设备数量高速增长

根据全球移动通信系统协会(GSMA)统计数据显示,2010-2020年全球物联网设备数量高速增长,复合增长率达19%;2020年,全球物联网设备连接数量高达126亿个。“万物物联”成为全球网络未来发展的重要方向,据GSMA预测,2025年全球物联网设备(包括蜂窝及非蜂窝)联网数量将达到约246亿个。万物互联成为全球网络未来发展的重要方向。

全球物联网市场规模逐年增长

整体来看,物联网是世界信息产业第三次浪潮。当前,全球物物联网核心技术持续发展,标准体系加快构建,产业体系处于建立和完善过程中。未来几年,全球物联网市场规模将出现快速增长。IDC数据显示,2020年全球物联网市场规模约达136万亿美元。

一.超高频RFID电子标签(UHF):
超高频的射频标签简称为微波射频标签,UHF及微波频段的RFID一般采用电磁发射原理
工作频率:超高频(902MHz~928MHz)
符合标准:EPC C1G2(ISO 18000-6C)
可用数据区:240位EPC码
标签识别符:(TID) 64位
工作模式:可读写
天线极化:线极化
1 超高频标签的阅读距离大,可达10米以上。
2 超高频作用范围广,现最先进的物联网技术都是采用超高频电子标签技术。
3 传送数据速度快,每秒可达单标签读取速率170张/秒(EPC C1G2标签)
4 标签存贮数据量大。
5 超高频电子标签灵活性强,轻易就可以识别得到。
6 有很高的数据传输速率,在很短的时间内可以读取大量的电子标签。
7 防冲突机制,适合于多标签读取,单次可批量读取多个电子标签。
8 电子标签的天线一般是长条和标签状。天线有线性和圆极化两种设计,满足不同应用的需求。
9 数据保存时间 >10年。
10 手持读写器可对超高频电子标签进行读写 *** 作。
11 手持读写器可对超高频电子标签进行批量 *** 作。
12 手持读写器带CE *** 作系统,读取超高频电子标签数据时,可通过WIFI、GPRS实时上传至后台数据库。
13 手持读写器相当一台PDA电脑,通过读取超高频电子标签数据,可在手持读写器完成读及写动作,且可在手持读写器即时查询标签数据。(如厂家信息、生产批号、生产日期等等)
14 超高频电子标签具有全球唯一的ID号,安全保密性强,不易被破解。
15 智能控制;高可靠性;高保密性;易 *** 作;方便查询;读写性能更加完善。
二.低频(LF)和高频(HF):
低频(LF)和高频(HF)频段RFID电子标签一般采用电磁耦合原理
高频典型工作频率为1356MHz。该频段的射频标签,因其工作原理与低频标签完全相同,即采用电感耦合方式工作,所以宜将其归为低频标签类中。另一方面,根据无线电频率的一般划分,其工作频段又称为高频,所以也常将其称为高频标签。
工作频率: 低频(125KHz)、高频(1354MHz)
1 低频标签的阅读距离只能在5厘米以内。
2 低频作用范围现在主要是运用于低端技术领域范围内,如自动停车场收费和车辆管理系统等等。
3 传送数据速度较慢。
4 标签存贮数据量较少。
5 低频电子标签灵活性差,不易被识别。
6 数据传输速率低,在短时间内只可以一对一的读取电子标签。
7 只能适合低速、近距离识别应用。
8 与超高频电子标签相比,标签天线匝数更多,成本更高一些。
9 读取的距离小,低频标签与阅读器之间传送数据时,低频标签需位于阅读器天线辐射的近场区内。低频标签的阅读距离一般情况下小于8厘米。
10 读取电子标签数据时只能一对一进行读取。
11 手持读写器读取电子标签时不能实时上传数据,必须通过USB连接电脑才能把数据上传至后台。
12 手持读写器不能实时查询数据。
13 大部分低频不可写。
14 低频电子标签安全保密性差,易被破解。


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/dianzi/10612636.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-05-10
下一篇 2023-05-10

发表评论

登录后才能评论

评论列表(0条)

保存