1、物联网设备管理:雁飞格物DMP平台可以管理大量的物联网设备,包括注册、授权、监控、配置、维护等。这些设备可以是传感器、执行器、控制器等,可以实现数据采集、控制、监测等功能。
2、物联网数据采集:平台可以通过采集物联网设备传输的数据来分析设备状态、控制设备等。可以支持多种协议,包括MQTT、CoAP等,支持实时数据采集和批量数据采集。
3、数据分析和处理:平台可以对采集到的数据进行分析和处理,包括数据清洗、数据存储、数据挖掘、数据建模等。可以通过可视化的方式展现数据分析结果。
4、物联网应用开发:平台提供应用开发的支持,包括API接口、应用模板、应用开发工具等。可以帮助开发人员快速开发出符合业务需求的应用程序。
5、物联网安全管理:平台可以提供物联网设备的安全管理机制,包括身份认证、访问控制、数据加密等。可以确保设备的安全性和数据的保密性。院校专业:
专业层次 专科(高职)
基本学制 三年
学历 专科(高职)
专业代码 510102
是什么物联网应用技术主要研究信息采集、无线传输、信息处理等方面基本知识和技能,进行联网系统设计、项目管理、终端节点的安装与调试、系统集成、施工等。例如:物流的运输、仓储、包装、装卸搬运、流通加工、配送、信息服务等各个环节的系统感知与信息采集的设备应用,智能电力中配变监控与故障检测等。 关键词:物流 仓储 运输 智能电力
学什么《物联网导论》、《电工电路基础》、《计算机网络技术》、《建筑识图》、《布线工程》、《单片机技术及应用》、《数据库原理及应用》、《JAVA程序设计》、《传感器技术及应用》、《嵌入式系统开发》 部分高校按以下专业方向培养:智能建筑。
干什么信息类企事业单位:物联网设备的生产、应用和维护,嵌入式系统的开发和维护,物联网系统产品销售与推广。
详解基本修业年限三年
职业面向面向物联网安装调试员、物联网工程技术人员、计算机网络工程技术人员、计算机硬件工程技术人员、嵌入式系统设计工程技术人员等职业,物联网设备安装配置和调试、物联网系统运行管理和维护、物联网系统应用开发、物联网项目规划和管理等岗位(群)。
培养目标定位本专业培养德智体美劳全面发展,掌握扎实的科学文化基础和感知识别技术、无线传输技术、嵌入式技术、物联网云平台应用等知识,具备物联网设备选型、物联网应用开发、物联网项目规划和管理、物联网云平台数据存储和管理等能力,具有工匠精神和信息素养,能够从事物联网设备安装配置和调试、物联网系统运行管理和维护、物联网系统应用开发、物联网项目规划和管理等工作的高素质技术技能人才。
主要专业能力要求1具有感知识别设备选型、装调、数据采集与运行维护的能力; 2具有无线传输设备选型与装调及无线网络组建、运行维护与故障排查的能力; 3具有嵌入式设备开发环境搭建、嵌入式应用开发与调测的能力; 4具有物联网系统安装配置、调试、运行维护与常见故障维修的能力; 5具有物联网移动应用开发、平台系统安装测试、数据应用处理和运行维护的能力; 6具有初步的物联网工程项目施工规划、方案编制与项目管理的能力; 7具有物联网云平台配置、测试、数据存储与管理的能力; 8具有探索将5G、人工智能等现代信息技术应用于物联网技术领域的能力; 9具有探究学习、终身学习和可持续发展的能力。
主要专业课程与实习实训专业基础课程:
物联网工程导论、电工电子技术、计算机网络技术应用、程序设计基础、数据库技术及应用、单片机技术。专业基础课程:
传感器应用技术、无线传输技术、自动识别应用技术、物联网嵌入式技术、物联网设备装调与维护、物联网系统部署与运维、物联网应用开发、物联网工程设计与管理。实习实训:
对接真实职业场景或工作情境,在校内外进行物联网设备装调与维护、物联网系统部署与运维、物联网应用开发等实训。在物联网行业的集成与应用、物联网应用开发、工程设计与管理等单位进行岗位实习。职业类证书举例
职业技能等级证书:传感网应用开发、移动应用开发、计算机视觉应用开发、大数据应用开发(Java)、物联网智能家居系统集成和应用、物联网工程实施与运维、物联网云平台运用接续专业举例
接续高职本科专业举例:物联网工程技术、电子信息工程技术、嵌入式技术、工业互联网技术 接续普通本科专业举例:物联网工程、电子信息工程、电子信息科学与技术、计算机科学与技术持续本科专业举例
就业率
85%-87% 2019年 87%-97% 2021年 89%-98% 2020年男女比例
男生 66% 34% 女生开设课程
物联网概论、物联网硬件基础、无线传感网应用技术、RFID 应用技术、M2M 应用技术、物联网应用软件开发、Android 移动开发等。 其他信息:物联网应用技术主要研究信息采集、无线传输、信息处理等方面基本知识和技能,进行联网系统设计、项目管理、终端节点的安装与调试、系统集成、施工等。 物联网应用技术学什么课程 《物联网导论》、《电工电路基础》、《计算机网络技术》、《建筑识图》、《布线工程》、《单片机技术及应用》、《数据库原理及应用》、《JAVA程序设计》、《传感器技术及应用》、《嵌入式系统开发》 部分高校按以下专业方向培养:智能建筑。 物联网应用技术专业就业 目前非纯软件产品的IT公司基本都会有物联网人才的需求,这样的企业包括手机、通信、医疗、家用电器、安防等众多行业,例如三星、西门子、飞利浦、通用电器、思科、华为、大唐电信等IT知名企业目前正在招聘物联网工程师。 物联网工程师,其实很多公司都在招聘,去各大招聘网站搜搜就知道,不过很多公司招聘名称可能不是招物联网工程师,物联网概念是新的,但涉及的一些核心技术是很早就有的,楼主可以看下自己的优势,嵌入式技术,传感技术,RFID技术,哪个自己更擅长,可以在招聘网站搜这样的一些关键词。
是需要做数据采集,数据上传吗?可以借助蓝牙网关来实现。
蓝牙网关的数据抓取和传输过程如下:
蓝牙网关定时抓取蓝牙终端设备的数据包;
网关通过WiFi或4G方式将抓取到的数据包上传到云服务器;
如果有控制指令的话,还可以通过蓝牙网关将控制指令传送到对应的蓝牙终端设备,实现双向传输。
蓝牙网关抓取蓝牙数据包的数量:
蓝牙42网关VDB2606/VDB2601(加PA大功率版本)/VDB2603(50蓝牙网关)一次性可以抓取200个蓝牙数据包后台WiFi/RJ45上传服务器。
蓝牙42网关VDB2605(加4G版本)一次性可以抓取200个蓝牙数据包后台WiFi/4G上传服务器。
物联网领域中,家居、楼宇和工业的智能化逐步普及,这些智能化的应用场景需要大量的实时数据支持。
智能制造。智能门锁,可以上传盗窃信息、物流配送最佳时间等。智能机器人。监控冰箱、与冰箱里的食物保存状态。
智能汽车,透过路径分析节省燃料或时间。智能运动检测程序。智能园艺浇水。智能家居系统,有效的节能与生活辅助。智能供应链定制、智能环境监测系统、智能贩卖机、智能城市、智能交通。
当然,物联网还会有许多广泛的用途,遍及智能交通、环境保护、政府工作、公共安全、平安家居、智能消防、工业监测、老人护理、个人健康、花卉栽培、水系监测、食品溯源、敌情侦查和情报搜集等多个领域。
扩展资料:
物联网的基本特征从通信对象和过程来看,物与物、人与物之间的信息交互是物联网的核心。物联网的基本特征可概括为整体感知、可靠传输和智能处理 。
整体感知—可以利用射频识别、二维码、智能传感器等感知设备感知获取物体的各类信息。
可靠传输—通过对互联网、无线网络的融合,将物体的信息实时、准确地传送,以便信息交流、分享。
智能处理—使用各种智能技术,对感知和传送到的数据、信息进行分析处理,实现监测与控制的智能化。根据物联网的以上特征,结合信息科学的观点,围绕信息的流动过程,可以归纳出物联网处理信息的功能:
获取信息的功能。主要是信息的感知、识别,信息的感知是指对事物属性状态及其变化方式的知觉和敏感;信息的识别指能把所感受到的事物状态用一定方式表示出来。
传送信息的功能。主要是信息发送、传输、接收等环节,最后把获取的事物状态信息及其变化的方式从时间(或空间)上的一点传送到另一点的任务,这就是常说的通信过程。
处理信息的功能。是指信息的加工过程,利用已有的信息或感知的信息产生新的信息,实际是制定决策的过程。
施效信息的功能。指信息最终发挥效用的过程,有很多的表现形式,比较重要的是通过调节对象事物的状态及其变换方式,始终使对象处于预先设计的状态。
参考资料来源:百度百科-物联网
大数据时代的来临
互联网特别是移动互联网的发展,加快了信息化向社会经济各方面、大众日常生活的渗透。有资料显示,1998年全球网民平均每月使用流量是1MB(兆字节),2000年是10MB,2003年是100MB,2008年是1GB(1GB等于1024MB),2014年将是10GB。全网流量累计达到1EB(即10亿GB或1000PB)的时间在2001年是一年,在2004年是一个月,在2007年是一周,而2013年仅需一天,即一天产生的信息量可刻满188亿张DVD光盘。我国网民数居世界之首,每天产生的数据量也位于世界前列。淘宝网站每天有超过数千万笔交易,单日数据产生量超过50TB(1TB等于1000GB),存储量40PB(1PB等于1000TB)。百度公司目前数据总量接近1000PB,存储网页数量接近1万亿页,每天大约要处理60亿次搜索请求,几十PB数据。一个8Mbps(兆比特每秒)的摄像头一小时能产生36GB数据,一个城市若安装几十万个交通和安防摄像头,每月产生的数据量将达几十PB。医院也是数据产生集中的地方。现在,一个病人的CT影像数据量达几十GB,而全国每年门诊人数以数十亿计,并且他们的信息需要长时间保存。总之,大数据存在于各行各业,一个大数据时代正在到来。
信息爆炸不自今日起,但近年来人们更加感受到大数据的来势迅猛。一方面,网民数量不断增加,另一方面,以物联网和家电为代表的联网设备数量增长更快。2007年全球有5亿个设备联网,人均01个;2013年全球将有500亿个设备联网,人均70个。随着宽带化的发展,人均网络接入带宽和流量也迅速提升。全球新产生数据年增40%,即信息总量每两年就可以翻番,这一趋势还将持续。目前,单一数据集容量超过几十TB甚至数PB已不罕见,其规模大到无法在容许的时间内用常规软件工具对其内容进行抓取、管理和处理。
数据规模越大,处理的难度也越大,但对其进行挖掘可能得到的价值更大,这就是大数据热的原因。首先,大数据反映舆情和民意。网民在网上产生的海量数据,记录着他们的思想、行为乃至情感,这是信息时代现实社会与网络空间深度融合的产物,蕴含着丰富的内涵和很多规律性信息。根据中国互联网络信息中心统计,2012年底我国网民数为564亿,手机网民为42亿,通过分析相关数据,可以了解大众需求、诉求和意见。其次,企业和政府的信息系统每天源源不断产生大量数据。根据赛门铁克公司的调研报告,全球企业的信息存储总量已达22ZB(1ZB等于1000EB),年增67%。医院、学校和银行等也都会收集和存储大量信息。政府可以部署传感器等感知单元,收集环境和社会管理所需的信息。2011年,英国《自然》杂志曾出版专刊指出,倘若能够更有效地组织和使用大数据,人类将得到更多的机会发挥科学技术对社会发展的巨大推动作用。
大数据应用的领域
大数据技术可运用到各行各业。宏观经济方面,IBM日本公司建立经济指标预测系统,从互联网新闻中搜索影响制造业的480项经济数据,计算采购经理人指数的预测值。印第安纳大学利用谷歌公司提供的心情分析工具,从近千万条网民留言中归纳出六种心情,进而对道琼斯工业指数的变化进行预测,准确率达到87%。制造业方面,华尔街对冲基金依据购物网站的顾客评论,分析企业产品销售状况;一些企业利用大数据分析实现对采购和合理库存量的管理,通过分析网上数据了解客户需求、掌握市场动向。有资料显示,全球零售商因盲目进货导致的销售损失每年达1000亿美元,这方面的数据分析大有作为。
在农业领域,硅谷有个气候公司,从美国气象局等数据库中获得几十年的天气数据,将各地降雨、气温、土壤状况与历年农作物产量的相关度做成精密图表,预测农场来年产量,向农户出售个性化保险。在商业领域,沃尔玛公司通过分析销售数据,了解顾客购物习惯,得出适合搭配在一起出售的商品,还可从中细分顾客群体,提供个性化服务。在金融领域,华尔街“德温特资本市场”公司分析34亿微博账户留言,判断民众情绪,依据人们高兴时买股票、焦虑时抛售股票的规律,决定公司股票的买入或卖出。阿里公司根据在淘宝网上中小企业的交易状况筛选出财务健康和讲究诚信的企业,对他们发放无需担保的贷款。目前已放贷300多亿元,坏账率仅03%。
在医疗保健领域,“谷歌流感趋势”项目依据网民搜索内容分析全球范围内流感等病疫传播状况,与美国疾病控制和预防中心提供的报告对比,追踪疾病的精确率达到97%。社交网络为许多慢性病患者提供临床症状交流和诊治经验分享平台,医生借此可获得在医院通常得不到的临床效果统计数据。基于对人体基因的大数据分析,可以实现对症下药的个性化治疗。在社会安全管理领域,通过对手机数据的挖掘,可以分析实时动态的流动人口来源、出行,实时交通客流信息及拥堵情况。利用短信、微博、微信和搜索引擎,可以收集热点事件,挖掘舆情,还可以追踪造谣信息的源头。美国麻省理工学院通过对十万多人手机的通话、短信和空间位置等信息进行处理,提取人们行为的时空规律性,进行犯罪预测。在科学研究领域,基于密集数据分析的科学发现成为继实验科学、理论科学和计算科学之后的第四个范例,基于大数据分析的材料基因组学和合成生物学等正在兴起。
麦肯锡公司2011年报告推测,如果把大数据用于美国的医疗保健,一年产生潜在价值3000亿美元,用于欧洲的公共管理可获得年度潜在价值2500亿欧元;服务提供商利用个人位置数据可获得潜在的消费者年度盈余6000亿美元;利用大数据分析,零售商可增加运营利润60%,制造业设备装配成本会减少50%。
大数据技术的挑战和启示
目前,大数据技术的运用仍存在一些困难与挑战,体现在大数据挖掘的四个环节中。首先在数据收集方面。要对来自网络包括物联网和机构信息系统的数据附上时空标志,去伪存真,尽可能收集异源甚至是异构的数据,必要时还可与历史数据对照,多角度验证数据的全面性和可信性。其次是数据存储。要达到低成本、低能耗、高可靠性目标,通常要用到冗余配置、分布化和云计算技术,在存储时要按照一定规则对数据进行分类,通过过滤和去重,减少存储量,同时加入便于日后检索的标签。第三是数据处理。有些行业的数据涉及上百个参数,其复杂性不仅体现在数据样本本身,更体现在多源异构、多实体和多空间之间的交互动态性,难以用传统的方法描述与度量,处理的复杂度很大,需要将高维图像等多媒体数据降维后度量与处理,利用上下文关联进行语义分析,从大量动态而且可能是模棱两可的数据中综合信息,并导出可理解的内容。第四是结果的可视化呈现,使结果更直观以便于洞察。目前,尽管计算机智能化有了很大进步,但还只能针对小规模、有结构或类结构的数据进行分析,谈不上深层次的数据挖掘,现有的数据挖掘算法在不同行业中难以通用。
大数据技术的运用前景是十分光明的。当前,我国正处在全面建成小康社会征程中,工业化、信息化、城镇化、农业现代化任务很重,建设下一代信息基础设施,发展现代信息技术产业体系,健全信息安全保障体系,推进信息网络技术广泛运用,是实现四化同步发展的保证。大数据分析对我们深刻领会世情和国情,把握规律,实现科学发展,做出科学决策具有重要意义,我们必须重新认识数据的重要价值。
为了开发大数据这一金矿,我们要做的工作还很多。首先,大数据分析需要有大数据的技术与产品支持。发达国家一些信息技术(IT)企业已提前发力,通过加大开发力度和兼并等多种手段,努力向成为大数据解决方案提供商转型。国外一些企业打出免费承接大数据分析的招牌,既是为了练兵,也是为了获取情报。过分依赖国外的大数据分析技术与平台,难以回避信息泄密风险。有些日常生活信息看似无关紧要,其实从中也可摸到国家经济和社会脉搏。因此,我们需要有自主可控的大数据技术与产品。美国政府2012年3月发布《大数据研究与发展倡议》,这是继1993年宣布“信息高速公路”之后又一重大科技部署,联邦政府和一些部委已安排资金用于大数据开发。我们与发达国家有不少差距,更需要国家政策支持。
中国人口居世界首位,将会成为产生数据量最多的国家,但我们对数据保存不够重视,对存储数据的利用率也不高。此外,我国一些部门和机构拥有大量数据却不愿与其他部门共享,导致信息不完整或重复投资。政府应通过体制机制改革打破数据割据与封锁,应注重公开信息,应重视数据挖掘。美国联邦政府建立统一数据开放门户网站,为社会提供信息服务并鼓励挖掘与利用。例如,提供各地天气与航班延误的关系,推动航空公司提升正点率。
大数据的挖掘与利用应当有法可依。去年底全国人大通过的加强网络信息保护的决定是一个好的开始,当前要尽快制定“信息公开法”以适应大数据时代的到来。现在很多机构和企业拥有大量客户信息。应当既鼓励面向群体、服务社会的数据挖掘,又要防止侵犯个体隐私;既提倡数据共享,又要防止数据被滥用。此外,还需要界定数据挖掘、利用的权限和范围。大数据系统本身的安全性也是值得特别关注的,要注意技术安全性和管理制度安全性并重,防止信息被损坏、篡改、泄露或被窃,保护公民和国家的信息安全。
大数据时代呼唤创新型人才。盖特纳咨询公司预测大数据将为全球带来440万个IT新岗位和上千万个非IT岗位。麦肯锡公司预测美国到2018年需要深度数据分析人才44万—49万,缺口14万—19万人;需要既熟悉本单位需求又了解大数据技术与应用的管理者150万,这方面的人才缺口更大。中国是人才大国,但能理解与应用大数据的创新人才更是稀缺资源。
大数据是新一代信息技术的集中反映,是一个应用驱动性很强的服务领域,是具有无穷潜力的新兴产业领域;目前,其标准和产业格局尚未形成,这是我国实现跨越式发展的宝贵机会。我们要从战略上重视大数据的开发利用,将它作为转变经济增长方式的有效抓手,但要注意科学规划,切忌一哄而上。有人已经预言未来的时代僵尸一个“大数据”的时代,关注大数据的人越来越多,同时物联网的出现与发展推动了数据采集的能力,为数据库的建立提供了有力的支撑。而大数据的处理结果可以通过物联网这一平台有效地执行。数据的采集处理应用必将成为时代的发展主题。
物联网概念的提出
1998年,MIT的Kevin Ashton第一次提出:把RFID技术与传感器技术应用于日常物品中形成一个“物联网”
2005年,ITU报告:物联网是通过RFID和智能计算等技术实现全世界设备互联互联的网络。
2008年,IBM提出:把传感器设备安装到各种物体中,并且普遍链接形成网络,即“物联网”,进而再次基础上形成“智慧地球”。
物联网形式早已存在,统一意义上的物联网概念提出是在架构在互联网发展成熟的基础上。
物联网是互联网的应用拓展,与其说物联网是网络,不如说物联网是业务和应用。因此,应用创新是物联网发展的核心,以用户体验为核心是物联网发展的灵魂。
大数据,指的是所涉及的资料量规模据达到无法透过目前主流软件工具,在河里时间内达到管理、处理并且整理成为帮助企业经营决策更有积极目的的资讯。
大数据的误区
1、“大数据”不等于“海量数据”;
2、“大数据”不是一门“新兴技术”;
3、“大数据”不仅仅是“一种理念”。
智慧化的新经济形态
外在:物联网
人和机器的智慧融合
信息和物理世界的智慧融合
信息化与三大产业的智慧融合
内涵:大数据
每个人都是数据产生者、拥有者和消费者;
数据成为新“工业”革命的原材料;
数据中提出信息和智慧
新范式的确立表现为智慧产品的普遍化。
以上由物联传媒转载,如有侵权联系删除
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)