1、城市管理
(1)智能交通(公路、桥梁、公交、停车场等)物联网技术可以自动检测并报告公路、桥梁的“健康状 况”,还可以避免过载的车辆经过桥梁,也能够根据光线强度对路灯进行自动开关控制。
在交通控制方面,可以通过检测设备,在道路拥堵或特殊情况时,系统自动调配红绿灯,并可以向车主 预告拥堵路段、推荐行驶最佳路线。
在公交方面,物联网技术构建的智能公交系统通过综合运用网络通信、GIS地理信息、GPs定位及电子控 制等手段,集智能运营调度、电子站牌发布、IC卡收费、ERP(快速公交系统)管理等于一体。通过该系 统可以详细掌握每辆公交车每天的运行状况。另外,在公交候车站台上通过定位系统可以准确显示下一 趟公交车需要等候的时间;还可以通过公交查询系统,查询最佳的公交换乘方案。
停车难的问题在现代城市中已经引发社会各界的热烈关注。通过应用物联网技术可以帮助人们更好地找 到车位。智能化的停车场通过采用超声波传感器、摄像感应、地感性传感器、太阳能供电等技术,第一 时间感应到车辆停入,然后立即反馈到公共停车智能管理平台,显示当前的停车位数量。同时将周边地 段的停车场信息整合在一起,作为市民的停车向导,这样能够大大缩短找车位的时间。
(2)智能建筑(绿色照明、安全检测等)
通过感应技术,建筑物内照明灯能自动调节光亮度,实现节能环保,建筑物的运作状况也能通过物联网 及时发送给管理者。同时,建筑物与GPs系统实时相连接,在电子地图上准确、及时反映出建筑物空间地 理位置、安全状况、人流量等信息。
(3)文物保护和数字博物馆
数字博物馆采用物联网技术,通过对文物保存环境的温度、湿度、光照、降尘和有害气体等进行长期监 测和控制,建立长期的藏品环境参数数据库,研究文物藏品与环境影响因素之间的关系,创造最佳的文 物保存环境,实现对文物蜕变损坏的有效控制。
(4)古迹、古树实时监测
通过物联网采集古迹、古树的年龄、气候、损毁等状态信息。及时作出数据分析和保护措施。
在古迹保护上实时监测能有选择地将有代表性的景点图像传递到互联网上,让景区对全世界做现场直播 ,达到扩大知名度和广泛吸引游客的目的。另外,还可以实时建立景区内部的电子导游系统。
(5)数字图书馆和数字档案馆
使用RFID设备的图书馆/档案馆,从文献的采访、分编、加工到流通、典藏和读者证卡,RFD标签和阅读 器已经完全取代了原有的条码、磁条等传统设备。将RFID技术与图书馆数字化系统相结合,实现架位标 识、文献定位导航、智能分拣等。
应用物联网技术的自助图书馆,借书和还书都是自助的。借书时只要把身份z或借书卡插进渎卡器 里,再把要借的书在扫描器上放一下就可以了。还书过程更简单,只要把书投进还书口,传送设备就自 动把书送到书库。同样通过扫描装置,工作人员也能迅速知遭书的类别和位置以进行分拣。
2、数字家庭
如果简单地将家庭里的消费电子产品连接起来,那么只是—个多功能遥控器控制所有终端,仅仅实现了 电视与电脑、手机的连接,这不是发展数字家庭产业的初衷。只有在连接家庭设备的同时,通过物联网 与外部的服务连接起来,才能真正实现服务与设备互动。有了物联网,就可以在办公室指挥家庭电器的 *** 作运行,在下班回家的途中,家里的饭菜已经煮熟,洗澡的热水已经烧好,个性化电视节目将会准点 播放;家庭设施能够自动报修;冰箱里的食物能够自动补货。
3、定位导航
物联网与卫星定位技术、GSM/GPRS/CDMA移动通讯技术、GIS地理信息系统相结合,能够在互联网和移 动通信网络覆盖范围内使用GPs技术,使用和维护成本大大降低,并能实现端到端的多向互动。
4、现代物流管理
通过在物流商品中植入传感芯片(节点),供应链上的购买、生产制造、包装/装卸、堆栈、运输、配 送/分销、出售、服务每—个环节都能无误地被感知和掌握。这些感知信息与后台的GIS/GPS数据库无 缝结合,成为强大的物流信息嘲络。
5、食品安全控制
食品安全是国计民生的重中之重。通过标签识别和物联网技术,可以随时随地对食品生产过程进行实时 监控,对食品质量进行联动跟踪,对食品安全事故进行有效预防,极大地提高食品安全的管理水平。
6、零售
RFID取代零售业的传统条码系统(Barcode),使物品识别的穿透性(主要指穿透金属和液体)、远距离 以及商品的防盗和跟踪有了极大改进。
7、数字医疗
以RFID为代表的自动识别技术可以帮助实现对病人不问断地监控、会诊和共享医疗记录,以及对医 疗器械的追踪等。而物联网将这种服务扩展至全世界范围。RFID技术与信息系统(HIS)及药品物流系统的融合,是医疗信息化的必然趋势。
8、防入侵系统
通过成千上万个覆盖地面、栅栏和低空探测的传感节点,防止入侵者的翻越、偷渡、恐怖袭击等攻击性 入侵。上海机场和上海世界博览会已成功采用了该技术。
据预测,到2035年前后。中国的物联网终端将达到数千亿个。随着物联网的应用普及,形成我国的物联 网标准规范和核心技术,成为业界发展的重要举措。解决好信息安全技术,是物联网发展面临的迫切问题。
根据我的预测未来物联网的市场潜力非常巨大,现在各大公司巨头也已经开始布局物联网市场了,所以掌握物联网核心技术是非常有益的!!物联网方向的工作比信息安全要好,主要原因如下:
1、信息安全对要狭窄些,物联网工作要宽;
2、虽然物联网现在发展还不完善,但是万物互联是未来的趋势,特别是随着5G、人工智能、边缘计算、雾计算等技术的成熟和融入,物联网将深入到社会和生活的每一个角落,这将带来无数的就业和创业机会。
3、物联网入门易,容易看到短期进步;信息安全入门难,需要耐得住寂寞,需要非常严谨的思维和全面的知识技能,特别需要学习很多很枯燥的技术,比如 *** 作系统、密码学、编译原理。
当然如果自身条件非常符合信息安全方面的工作,选择信息安全的工作也不会错,沉下心去,坚持一段时间后,成为安全专家,也是非常好的。一大挑战是物联网设备会彻底跳过防火墙建立与第三方服务的长期连接,有的甚至表面上都不为企业所知。安全服务咨询公司Rapid7负责战略服务的资深安全顾问Mark Stanislav说,“企业部署现成物联网服务应考虑那些设备拥有的网络访问的层级,有多少数据进行传输,开发此设备的组织在信息安全方面的成熟度如何等。”
如果物联网设备被盗用,大多数组织基本上不要指望能知道发生了什么,因为对物联网软件和硬件的内部工作机制的了解非常有限。大部分这些物联网设备都能给可危害单台设备的攻击者提供很大的能力,然后再逐步渗透到整个网络,如果网络没有正确保护或者分段的话。“数据,无论是视频、音频、环境或其他敏感信息,往往都可以通过受入侵物联网设备出去,可能还会为犯罪分子提供组织有价值的信息来利用,” Stanislav补充道。
保护物联网最大的不同在于要跳出防火墙去思考,因为物联网意味着与公共互联网的连接。物联网分析服务提供商Keen IO的联合创始人兼CTO Daniel Kador说:“问题不是如何防止设备受入侵,这是肯定会的。而是当这种事情发生时如何去处置。这要看你自己的规划,不能单纯的说哪个专业好哪个专业不好。信息安全是专注于安全一个领域,是所谓的专,不过近几年人才已经饱和。物联网是一个新型的专业,由于国家政策等原因被吵的非常火,物联网学习的东西是基于计算机专业的附加射频识别等课程,是一个比较综合性质的学习,当然出来也可以专助于某一个领域,不一定是综合性质的。
--------------物联网校企联盟技术部1)安全隐私
如射频识别技术被用于物联网系统时,RFID标签被嵌入任何物品中,比如人们的日常生活用品中,而用品的拥有者不一定能觉察,从而导致用品的拥有者不受控制地被扫描、定位和追踪,这不仅涉及到技术问题,而且还将涉及到法律问题。
2)智能感知节点的自身安全问题
即物联网机器/感知节点的本地安全问题。由于物联网的应用可以取代人来完成一些复杂、危险和机械的工作,所以物联网机器/感知节点多数部署在无人监控的场景中。那么攻击者就可以轻易地接触到这些设备,从而对它们造成破坏,甚至通过本地 *** 作更换机器的软硬件。
3)假冒攻击
由于智能传感终端、RFID电子标签相对于传统TCP/IP网络而言是“裸露”在攻击者的眼皮底下的,再加上传输平台是在一定范围内“暴露”在空中的,“窜扰”在传感网络领域显得非常频繁、并且容易。所以,传感器网络中的假冒攻击是一种主动攻击形式,它极大地威胁着传感器节点间的协同工作。
4)数据驱动攻击
数据驱动攻击是通过向某个程序或应用发送数据,以产生非预期结果的攻击,通常为攻击者提供访问目标系统的权限。数据驱动攻击分为缓冲区溢出攻击、格式化字符串攻击、输入验证攻击、同步漏洞攻击、信任漏洞攻击等。通常向传感网络中的汇聚节点实施缓冲区溢出攻击是非常容易的。
5)恶意代码攻击
恶意程序在无线网络环境和传感网络环境中有无穷多的入口。一旦入侵成功,之后通过网络传播就变得非常容易。它的传播性、隐蔽性、破坏性等相比TCP/IP网络而言更加难以防范,如类似于蠕虫这样的恶意代码,本身又不需要寄生文件,在这样的环境中检测和清除这样的恶意代码将很困难。
6)拒绝服务
这种攻击方式多数会发生在感知层安全与核心网络的衔接之处。由于物联网中节点数量庞大,且以集群方式存在,因此在数据传播时,大量节点的数据传输需求会导致网络拥塞,产生拒绝服务攻击。
7)物联网的业务安全
由于物联网节点无人值守,并且有可能是动态的,所以如何对物联网设备进行远程签约信息和业务信息配置就成了难题。另外,现有通信网络的安全架构都是从人与人之间的通信需求出发的,不一定适合以机器与机器之间的通信为需求的物联网络。使用现有的网络安全机制会割裂物联网机器间的逻辑关系。
8)传输层和应用层的安全隐患
在物联网络的传输层和应用层将面临现有TCP/IP网络的所有安全问题,同时还因为物联网在感知层所采集的数据格式多样,来自各种各样感知节点的数据是海量的、并且是多源异构数据,带来的网络安全问题将更加复杂
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)