在民用航空飞速发展的今天,民用航空运输已经成为全球主要的和重要的运输手段之一,飞机如何安全着陆是飞机飞行过程中面临的最重要的问题。微波着陆系统(MLS)由方位引导、仰角引导和拉平仰角引导等设备所组成。方位引导是在水平面上可在跑道中心线每边20 ~60 区域内提供任意要求的航道,仰角引导是在垂直面上可以提供许多下滑道 (如从1 ~15 ),拉平仰角引导基本原理与仰角引导相同,但所发射的是更窄 更薄的波瓣,以便为拉平阶段的飞机提供精确的仰角引导信息,该系统具有提供精密测距信息的能力。微波着陆系统工作在微波波段,空间扫描的波瓣主要依靠天波来形成,受地形和地物的影响较小,因此具有仪表着陆系统无法比拟的高精度、高稳定性、易架设、易调整等优点;适用于作各种起落的各型飞机。本设计就是根据MLS的工作原理,介绍了基于DSP实现的算法——DPSK自适应解调和系统硬件设计。
1 微波着陆系统的工作原理
微波着陆系统(MLS)包括机场地面发射台及机载接收设备两部分。地面发射台分为7个部分:方位扫描波束发射台、仰角扫描波束发射台、拉平引导台、方位引导台、精密测距应答机、全向着陆数据字发射台,其中复飞方位引导台为可选项。机载设备分为微波着陆接收机和精密测距收发机两部分。机载接收机通过接收各个分系统的信号,识别出各个系统的功能识别码,然后作出相应的处理,计算出飞机着陆所需要的各个数据,控制飞机的飞行姿势,达到安全着陆的目的。着陆系统地面设备布局,如图1所示。其中1为方位引导台;2为精密测距应答台;3为拉平引导台(测量离地高度);4为下滑引导台(测量仰角);5为复飞引导台。
基带信息处理系统通过对限幅中频信号进行解调,恢复出地面设备发送的基本数据及辅助数据和莫尔斯码,同时还产生一个同步脉冲。由于多径干扰产生的脉冲会影响锁住闸门的可靠性,扫描脉冲跟踪系统通过对扫描脉冲进行跟踪,输出时间闸门,只允许包络处理系统处理对时间闸门内的包络信号进行分析,消除了多径干扰的影响。角度计算系统计算锁住闸门的时间间隔,然后把时间间隔转换成角度。置信计数用于确定处理器当前输出角度的可靠性,只有置信计数达到了一定数值时才允许接收机的输出结果送到飞行控制系统中。系统工作时钟用于系统的时钟同步,也用于角度计算系统的时间计数。
2 接收机信号处理系统的设计原理
2.1 接收机信号处理系统总体结构
接收机信号处理系统的主要任务是对中频信号及包络信号进行分析处理,最后恢复出地面设备发送过来的数据,同时计算出当前飞机的角位置。为了实现系统要求,文中把接收机信号处理系统分为以下几个部分:包络处理系统、基带信息处理系统、角度计算系统、扫描脉冲跟踪系统、置信计数,其结构框图,如图2所示。
2.2 基带信息处理系统算法及仿真
微波着陆系统信息的传输使用二进制差分相位键控(2DPSK)方式调制。接收机天线接收到C波段(5 000 MHz)的射频信号后,与本振信号进行混频,得到30 MHz的中频已调信号。该信号是一个限幅的中频信号,丢失了幅度信息,所以接收机还会输出一路只有幅度信息的包络检波信号作为有无扫描脉冲的判断依据。基带信息处理系统对30 MHz中频进行中频采样,通过解调及重采样恢复出15.625 kHz的基带信号。微波着陆系统的中频信号带有很大的噪声干扰,信噪比可能是负值,同时还会带有多普勒频移及相位干扰。针对微波着陆信号的特点,系统使用了LMS自适应解调的方法,对DPSK基带信号进行恢复。
2.2.1 DPSK自适应解调原理
自适应DPSK解调是DPSK解调又一实现方法。自适应解调的误码性能比相干解调的误码性能优越。自适应解调的主要缺点是它要求载波频率比数据频率高得多,但这在DPSK调制方式中是可以满足的。由于LMS算法的迭代关系,自适应解调算法更适用于DSP技术的一体化实现,其实现原理图,如图3所示。
中频信号通过相位检测滤波后,得到一个带有陷落的本振信号,对其求绝对值,再经过均值滤波,滤除噪声引起的小陷落及本振信号,得到一个平滑的不带本振的陷落信号。把该信号与陷落门限相比较,并通过单稳整形,恢复出一个方波信号。最后通过位同步时钟对该方波进行抽样判决,直接恢复出基带DPSK信号,不需要进行差分译码。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)