请问 函数的周期怎么求?简单的方法

请问 函数的周期怎么求?简单的方法,第1张

周期,可以把一个函数式子化成f(x)=f(x+a)的这样形式,那么它的周期就是a (当然a>0),

例如 下面为一系列的2a为周期的函数

f(x+a)=-f(x) 所以有f(x+a+a)=-f(x+a)=f(x) 就化解到 f(x)=f(x+2a)的形式了,关键是运用整体思想,去代换。

函数的周期性定义:若存在常数T,对于定义域内的任一x,使f(x)=f(x+T) 恒成立,则f(x)叫做周期函数,T叫做这个函数的一个周期。

扩展资料:

函数周期性的关键的几个字“有规律地重复出现”。当自变量增大任意实数时(自变量有意义),函数值有规律的重复出现

假如函数f(x)=f(x+T)(或f(x+a)=f(x-b)其中a+b=T),则说T是函数的一个周期T的整数倍也是函数的一个周期。

出示函数周期性的定义:对于函数y=f(x),假如存在一个非零常数T,使得当x取定义域内的任何值时,f(x+T)=f(x)都成立,那么就把函数y=f(x)叫做周期函数,不为零的常数T叫做这个函数的周期。

“当自变量增大某一个值时,函数值有规律的重复出现”这句话用数学语言的表达

2、定义:对于函数y=f(x),如果存在一个不为零的常数T,使得当x取定义域内的每一个值时,f(x+T)=f(x)

概念的具体化:

当定义中的f(x)=sinx或cosx时,思考T的取值。

T=2kπ(k∈Z且k≠0)

所以正弦函数和余弦函数均为周期函数,且周期为 T=2kπ(k∈Z且k≠0)

展示正、余弦函数的图象。

周期函数的图象的形状随x的变化周期性的变化。(用课件加以说明。)

强调定义中的“当x取定义域内的每一个值”

令(x+T)2=x2,则x2+2xT+T2=x2

所以2xT+T2=0, 即T(2x+T)=0

所以T=0或T=-2x

强调定义中的“非零”和“常数”。

例:三角函数sin(x+T)=sinx

cos(x+T)=cosx中的T取2π

3、最小正周期的概念:

对于一个函数f(x),如果它所有的周期中存在一个最小的正数,那么这个最小正数叫f(x)的最小正周期。

对于正弦函数y=sinx, 自变量x只要并且至少增加到x+2π时,函数值才能重复取得。所以正弦函数和余弦函数的最小正周期是2π。(说明:如果以后无特殊说明,周期指的就是最小正周期。)

在函数图象上,最小正周期是函数图象重复出现需要的最短距离。

参考资料:

-函数周期性

函数的周期性定义:若存在一非零常数T,对于定义域内的任意x,使f(x)=f(x+T) 恒成立,则f(x)叫做周期函数,T叫做这个函数的一个周期。

十七世纪伽俐略在《两门新科学》一书中,几乎全部包含函数或称为变量关系的这一概念,用文字和比例的语言表达函数的关系。

1637年前后笛卡尔在他的解析几何中,已注意到一个变量对另一个变量的依赖关系,但因当时尚未意识到要提炼函数概念,因此直到17世纪后期牛顿、莱布尼兹建立微积分时还没有人明确函数的一般意义,大部分函数是被当作曲线来研究的。

函数的由来:

中文数学书上使用的“函数”一词是转译词。是我国清代数学家李善兰在翻译《代数学》(1859年)一书时,把“function”译成“函数”的。

中国古代“函”字与“含”字通用,都有着“包含”的意思。李善兰给出的定义是:“凡式中含天,为天之函数。”中国古代用天、地、人、物4个字来表示4个不同的未知数或变量。这个定义的含义是:“凡是公式中含有变量x,则该式子叫做x的函数。”

所以“函数”是指公式里含有变量的意思。我们所说的方程的确切定义是指含有未知数的等式。但是方程一词在我国早期的数学专著《九章算术》中,意思指的是包含多个未知量的联立一次方程,即所说的线性方程组。

物理上的周期一般有两个计算公式: 

1、T=2πr/v(周期=圆的周长÷线速度); 

2、T=2π/ω(“ω”代表角速度)。

若f(x)为周期函数,则把使得f(x+l)=f(x)对定义域中的任何x都成立的最小正数l,称为f(x)的(基本)周期。

在计算机中,完成一个循环所需要的时间;或访问一次存储器所需要的时间,亦称为周期 。周期函数的实质:两个自变量值整体的差等于周期的倍数时,两个自变量值整体的函数值相等。如:f(x+6) =f(x-2)则函数周期为T=8。

扩展资料

周期与频率:T=1/f

卫星绕行速度、角速度、周期:

V=(GM/r)^1/2;ω=(GM/r3)^1/2

T=2π(r3/GM)^1/2{M:中心天体质量}

若f(x)为周期函数,则把使得f(x+l)=f(x)对定义域中的任何x都成立的最小正数l,称为f(x)的(基本)周期。

对于函数y=f(x)。

如果存在一个不为零的常数T,使得当x取定义域内的每一个值时,f(x+T)=f(x)都成立,那么就把函数y=f(x)叫做周期函数,不为零的常数T叫做这个函数的周期。事实上,任何一个常数kT(k∈Z,且k≠0)都是它的周期。

并且周期函数f(x)的周期T是与x无关的非零常数,且周期函数不一定有最小正周期。

比如说f(x+1)=-f(3+x),求f(x)的周期。

1、做变量替换令y=x+1 ,得到 f(y)= -f(y+2);

2、再一次套用这个式子,得到f(y+2)=-f(y+4);

3、两个式子结合,得到f(y)=f(y+4),所以,周期是4。

关键的地方是:凑出f(x)=f(x+T),这时候T就是周期。而上面3个步骤就是往这个方向凑。

扩展资料:

若f(x)是在数集M上以T为最小正周期的周期函数,则K f(x)+C(K≠0)和1/ f(x)分别是集M和集{X/ f(x) ≠0,X ∈M}上的以T为最小正周期的周期函数。

证:

∵T是f(x)的周期,∴对 有X±T 且f(x+T)= f(x),∴K f(x)+C=K f(x+T)+C,

∴K f(x)+C也是M上以T为周期的周期函数。

若f(x)是集M上以T为最小正周期的周期函数,则f(ax+b)是集{x|ax+b∈M}上的以T/ a为最小正周期的周期函数,(其中a、b为常数)。

周期t公式是:

1、T=2πr/v(周期=圆的周长÷线速度)。

2、T=2π/ω(“ω”代表角速度)。

周期函数的实质:两个自变量值整体的差等于周期的倍数时,两个自变量值整体的函数值相等。如:f(x+6) =f(x-2)则函数周期为T=8。

周期函数性质:

(1)若T(≠0)是f(X)的周期,则-T也是f(X)的周期。

(2)若T(≠0)是f(X)的周期,则nT(n为任意非零整数)也是f(X)的周期。

(3)若T1与T2都是f(X)的周期,则T1±T2也是f(X)的周期。

(4)若f(X)有最小正周期T,那么f(X)的任何正周期T一定是T的正整数倍。

(5)周期函数f(X)的定义域M必定是双方无界的集合。

f(x+a)=-f(x)周期为2a。证明过程:因为f(x+a)=-f(x),且f(x)=-f(x-a),所以f(x+a)=f(x-a),即f(x+2a)=f(x),所以周期是2a。

sinx的函数周期公式T=2π,sinx是正弦函数,周期是2π

cosx的函数周期公式T=2π,cosx是余弦函数,周期2π。

tanx和cotx的函数周期公式T=π,tanx和cotx分别是正切和余切

secx 和cscx的函数周期公式T=2π,secx和cscx是正割和余割。

扩展资料:

y=Asin(wx+b) 周期公式T=2π/w

y=Acos(wx+b) 周期公式T=2π/w

y=Atan(wx+b) 周期公式T=π/w

重要推论:

如果函数f(x)(x∈D)在定义域内有两条对称轴x=a,x=b则函数f(x)是周期函数,且周期T=2|b-a|(不一定为最小正周期)。

如果函数f(x)(x∈D)在定义域内有两个对称中心A(a,0),B(b,0)则函数f(x)是周期函数,且周期T=2|b-a|(不一定为最小正周期)。

如果函数f(x)(x∈D)在定义域内有一条对称轴x=a和一个对称中心B(b, 0)(a≠b),则函数f(x)是周期函数,且周期T=4|b-a|(不一定为最小正周期)。

函数周期性公式及推导:f(x+a)=-f(x)周期为2a。证明过程:因为f(x+a)=-f(x),且f(x)=-f(x-a),所以f(x+a)=f(x-a),即f(x+2a)=f(x),所以周期是2a。

公式及推导

f(x+a)=-f(x)

那么f(x+2a)=f[(x+a)+a]=-f(x+a)=-[-f(x)]=f(x)

所以f(x)是以2a为周期的周期函数。

f(x+a)=1/f(x)

那么f(x+2a)=f[(x+a)+a]=1/f(x+a)=1/[1/f(x)]=f(x)

所以f(x)是以2a为周期的周期函数。

f(x+a)=-1/f(x)

那么f(x+2a)=f[(x+a)+a]=-1/f(x+a)=1/[-1/f(x)]=f(x)

所以f(x)是以2a为周期的周期函数。

所以得到这三个结论。

函数的周期性

设函数f(x)在区间X上有定义,若存在一一个与x无关的正数T,使对于任一x∈X,恒有f(x+T)=f(x)

则称f(x)是以T为周期的周期函数,把满足上式的最小正数T称为函数f(x)的周期。二、周期函数的运算性质:

①若T为f(x)的周期,则f(ax+b)的周期为T/al。

②若f(x),g(x)均是以T为周期的函数,则f(X)+g(X)也是以T为周期的函数。

③若f(x),g(x)分别是以T1,T2,T1≠T2为周期的函数,则f(x)+g(x)是以T1,T2的最小公倍数为周期的函数。

周期公式

sinx的函数周期公式T=2π,sinx是正弦函数,周期是2π

cosx的函数周期公式T=2π,cosx是余弦函数,周期2π。

tanx和cotx的函数周期公式T=π,tanx和cotx分别是正切和余切。

secx和cscx的函数周期公式T=2π,secx和cscx是正割和余割。

令t=x-1;则f(t)=f(t+4)周期为4。

求周期函数的周期,可以直接利用定义来求,也可以利用基本周期函数的周期间接来求。基本周期函数的周期是:y=sinx  、y=cosx的周期是2π,y=tanx的周期是π。

比如: y=sin3x,    y=sin3x=sin(3x+2π)=sin[3(x+2π/3)

∴  y=sin3x的周期是 2π/3。

再比如说:y=sin²x     y=sin²x =1/2(1-cos2x)     cos2x的周期是π,  

∴ y=sin²x 的周期是 π。

扩展资料

周期函数的性质 共分以下几个类型:

(1)若T(≠0)是f(x)的周期,则-T也是f(x)的周期。

(2)若T(≠0)是f(x)的周期,则nT(n为任意非零整数)也是f(x)的周期。

(3)若T1与T2都是f(x)的周期,则T1±T2也是f(x)的周期。

(4)若f(x)有最小正周期T,那么f(x)的任何正周期T一定是T的正整数倍。

(5)若T1、T2是f(x)的两个周期,且T1/T2是无理数,则f(x)不存在最小正周期。

(6)周期函数f(x)的定义域M必定是至少一方无界的集合。

参考资料:周期函数_

欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/langs/11669718.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-05-17
下一篇 2023-05-17

发表评论

登录后才能评论

评论列表(0条)

保存