本文实例讲述了Python基于回溯法子集树模板解决0-1背包问题。分享给大家供大家参考,具体如下:
问题
给定N个物品和一个背包。物品i的重量是Wi,其价值位Vi ,背包的容量为C。问应该如何选择装入背包的物品,使得放入背包的物品的总价值为最大?
分析
显然,放入背包的物品,是N个物品的所有子集的其中之一。N个物品中每一个物品,都有选择、不选择两种状态。因此,只需要对每一个物品的这两种状态进行遍历。
解是一个长度固定的N元0,1数组。
套用回溯法子集树模板,做起来不要太爽!!!
代码
'''0-1背包问题'''n = 3 # 物品数量c = 30 # 包的载重量w = [20,15,15] # 物品重量v = [45,25,25] # 物品价值maxw = 0 # 合条件的能装载的最大重量maxv = 0 # 合条件的能装载的最大价值bag = [0,0] # 一个解(n元0-1数组)长度固定为nbags = [] # 一组解bestbag = None # 最佳解# 冲突检测def conflict(k): global bag,w,c # bag内的前k个物品已超重,则冲突 if sum([y[0] for y in filter(lambda x:x[1]==1,zip(w[:k+1],bag[:k+1]))]) > c: return True return False# 套用子集树模板def backpack(k): # 到达第k个物品 global bag,maxv,maxw,bestbag if k==n: # 超出最后一个物品,判断结果是否最优 cv = get_a_pack_value(bag) cw = get_a_pack_weight(bag) if cv > maxv : # 价值大的优先 maxv = cv bestbag = bag[:] if cv == maxv and cw < maxw: # 价值相同,重量轻的优先 maxw = cw bestbag = bag[:] else: for i in [1,0]: # 遍历两种状态 [选取1,不选取0] bag[k] = i # 因为解的长度是固定的 if not conflict(k): # 剪枝 backpack(k+1)# 根据一个解bag,计算重量def get_a_pack_weight(bag): global w return sum([y[0] for y in filter(lambda x:x[1]==1,zip(w,bag))])# 根据一个解bag,计算价值def get_a_pack_value(bag): global v return sum([y[0] for y in filter(lambda x:x[1]==1,zip(v,bag))])# 测试backpack(0)print(bestbag,get_a_pack_value(bestbag))
效果图
更多关于Python相关内容感兴趣的读者可查看本站专题:《Python数据结构与算法教程》、《Python函数使用技巧总结》、《Python字符串 *** 作技巧汇总》及《Python入门与进阶经典教程》
希望本文所述对大家Python程序设计有所帮助。
总结以上是内存溢出为你收集整理的Python基于回溯法子集树模板解决0-1背包问题实例全部内容,希望文章能够帮你解决Python基于回溯法子集树模板解决0-1背包问题实例所遇到的程序开发问题。
如果觉得内存溢出网站内容还不错,欢迎将内存溢出网站推荐给程序员好友。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)