傅立叶变换能将满足一定条件的某个函数表示成三角函数(正弦和/或余弦函数)或者它们的积分的线性组合。在不同的研究领域,傅里叶变换具有多种不同的变体形式,如连续傅立叶变换和离散傅立叶变换。最初傅立叶分析是作为热过程的解析分析的工具被提出的。
要理解傅立叶变换,确实需要一定的耐心,别一下子想着傅立叶变换是怎么变换的,当然,也需要一定的高等数学基础,最基本的是级数变换,其中傅立叶级数变换是傅立叶变换的基础公式。
折叠变换提出
让我们先看看为什么会有傅立叶变换?傅立叶是一位法国数学家和物理学家的名字,英语原名是Jean Baptiste Joseph Fourier(1768-1830), Fourier对热传递很感兴趣,于1807年在法国科学学会上发表了一篇论文,运用正弦曲线来描述温度分布,论文里有个在当时具有争议性的决断:任何连续周期信号可以由一组适当的正弦曲线组合而成。当时审查这个论文的人,其中有两位是历史上著名的数学家拉格朗日(Joseph Louis Lagrange, 1736-1813)和拉普拉斯(Pierre Simon de Laplace, 1749-1827),当拉普拉斯和其它审查者投票通过并要发表这个论文时,拉格朗日坚决反对,在他此后生命的六年中,拉格朗日坚持认为傅立叶的方法无法表示带有棱角的信号,如在方波中出现非连续变化斜率。法国科学学会屈服于拉格朗日的威望,拒绝了傅立叶的工作,幸运的是,傅立叶还有其它事情可忙,他参加了政治运动,随拿破仑远征埃及,法国大革命后因会被推上断头台而一直在逃避。直到拉格朗日死后15年这个论文才被发表出来。
谁是对的呢?拉格朗日是对的:正弦曲线无法组合成一个带有棱角的信号。但是,我们可以用正弦曲线来非常逼近地表示它,逼近到两种表示方法不存在能量差别,基于此,傅立叶是对的。
为什么我们要用正弦曲线来代替原来的曲线呢?如我们也还可以用方波或三角波来代替呀,分解信号的方法是无穷的,但分解信号的目的是为了更加简单地处理原来的信号。用正余弦来表示原信号会更加简单,因为正余弦拥有原信号所不具有的性质:正弦曲线保真度。一个正弦曲线信号输入后,输出的仍是正弦曲线,只有幅度和相位可能发生变化,但是频率和波的形状仍是一样的。且只有正弦曲线才拥有这样的性质,正因如此我们才不用方波或三角波来表示。
1<--->2π△(w) [△代表冲激函数]
由f(t)e^(jw0t)<--->F(w-w0)得
cosw0t=[e^(jw0t)+e^(-jw0t)]/2<--->π[△(w+w0)+△(w-w0)]
e^(iwt)=cos(wt)+sin(wt),代入原式便得到图中结果。单独的isin(wt)无意义。cos(wt)为偶函数,在负无穷大到正无穷大上积分=2倍的从0到正无穷大上的积分, 这就是系数2的来源,同时积分下限由负无穷大变为0。
直接就是调制定理,rect(t/2)的变换sinc函数搬移到以10^3为中心频率处
做的话就是时域相乘等于频域卷积→(1/2π)tsa(ωt/2)π[δ(ω+10^3)+δ(ω-10^3)]
就是把频谱复制到左右两边
根据欧拉公式,cosω0t=[exp(jω0t)+exp(-jω0t)]/2。直流信号的傅里叶变换是2πδ(ω)。根据频移性质可得exp(jω0t)的傅里叶变换是2πδ(ω-ω0)。
再根据线性性质,可得cosω0t=[exp(jω0t)+exp(-jω0t)]/2的傅里叶变换是πδ(ω-ω0)+πδ(ω+ω0)。
扩展资料:
用数学归纳法证明
( 1)当 R= 2时 ,由说明 1,这两个区域可想象为 以赤道为边界的两个半球面 ,赤道上有两个“顶点” 将赤道分成两条“边界”,即 R= 2,V= 2,E= 2;于是 R+ V- E= 2,欧拉定理成立。
( 2)设 R= m(m≥ 2)时欧拉定理成立 ,下面证明 R= m+ 1时欧拉定理也成立 。
由说明2,在 R= m+ 1的地图上任选一个 区域 X ,则 X 必有与它如此相邻的区域 Y ,使得在 去掉 X 和 Y 之间的唯一一条边界后 ,地图上只有 m 个区域了;在去掉 X 和 Y 之间的边界后 ,若原该边界两端 的顶点现在都还是 3条或 3条以上边界的顶点 。
则 该顶点保留 ,同时其他的边界数不变;若原该边界一 端或两端的顶点现在成为 2条边界的顶点 ,则去掉 该顶点 ,该顶点两边的两条边界便成为一条边界 。
-欧拉公式
电流(电源电动势、路端电压)随时间按正弦或余弦规律变化的电流,称为正弦交流电。其变化方程为:
e=E(m)sin2πft
u=U(m)sin2πft
i=I(m)sin2πft
注意:
cos(2πft)=sin(2πft+90),余弦与正弦的变换公式!! !!!!!!!!!!!!!!!!!!!!!!!!
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)