该节点主要用到来自cornerPointsLessSharp和surfPointsLessFlatScan的数据,对这两个容器中的点云进行了降采样,基于PCA原理,使用ceres求解器计算出两帧之间的位姿。
在函数laserOdometryHandler中,将laserOdometry节点和laserMapping节点计算的位姿结合,即可得到最终的轨迹odomAftMapped
建议分函数分部分看,不要从头看
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include "lidarFactor.hpp"
#include "aloam_velodyne/common.h"
#include "aloam_velodyne/tic_toc.h"
int frameCount = 0;
double timeLaserCloudCornerLast = 0;
double timeLaserCloudSurfLast = 0;
double timeLaserCloudFullRes = 0;
double timeLaserOdometry = 0;
// 维护这些CUBE来获得局部地图的
int laserCloudCenWidth = 10;
int laserCloudCenHeight = 10;
int laserCloudCenDepth = 5;
const int laserCloudWidth = 21;
const int laserCloudHeight = 21;
const int laserCloudDepth = 11;
//cube的数量
const int laserCloudNum = laserCloudWidth * laserCloudHeight * laserCloudDepth; //4851
// 记录submap中的有效cube的index,注意submap中cube的最大数量为 5 * 5 * 5 = 125
int laserCloudValidInd[125];
int laserCloudSurroundInd[125];
//来自odom的输入
pcl::PointCloud::Ptr laserCloudCornerLast(new pcl::PointCloud());
pcl::PointCloud::Ptr laserCloudSurfLast(new pcl::PointCloud());
//所有可视cube点的输出
pcl::PointCloud::Ptr laserCloudSurround(new pcl::PointCloud());
//围绕地图中的点来构建树
pcl::PointCloud::Ptr laserCloudCornerFromMap(new pcl::PointCloud());
pcl::PointCloud::Ptr laserCloudSurfFromMap(new pcl::PointCloud());
//input & output: points in one frame. local --> global
//输入和输出:一帧中的点。
本地-->全局
pcl::PointCloud::Ptr laserCloudFullRes(new pcl::PointCloud());
//每个cube中的点
pcl::PointCloud::Ptr laserCloudCornerArray[laserCloudNum];
pcl::PointCloud::Ptr laserCloudSurfArray[laserCloudNum];
//kd-tree
pcl::KdTreeFLANN::Ptr kdtreeCornerFromMap(new pcl::KdTreeFLANN());
pcl::KdTreeFLANN::Ptr kdtreeSurfFromMap(new pcl::KdTreeFLANN());
//优化的变量,是当前帧在世界坐标系下的pose
// 点云特征匹配时的优化变量
double parameters[7] = {0, 0, 0, 1, 0, 0, 0};
// Mapping线程估计的frame在world坐标系的位姿 P,因为Mapping的算法耗时很有可能会超过100ms,
//所以这个位姿P不是实时的,LOAM最终输出的实时位姿P_realtime,需要Mapping线程计算的相对低频位姿和Odometry线程计算的相对高频位姿做整合,
//详见后面 laserOdometryHandler 函数分析。
//此外需要注意的是,不同于Odometry线程,这里的位姿P,即q_w_curr和t_w_curr,本身就是匹配时的优化变量。
Eigen::Map q_w_curr(parameters);// map计算后的在world下的pose
Eigen::Map t_w_curr(parameters + 4);
//mapping线程到Odometry线程的pose变换,Odometry线程计算得到的当前帧在world坐标系下的pose
// 下面的两个变量是world坐标系下的Odometry计算的位姿和Mapping计算的位姿之间的增量(也即变换,transformation)
// wmap_T_odom * odom_T_curr = wmap_T_curr(即前面的q/t_w_curr);
Eigen::Quaterniond q_wmap_wodom(1, 0, 0, 0);
Eigen::Vector3d t_wmap_wodom(0, 0, 0);
// Odometry线程计算的frame在world坐标系的位姿
Eigen::Quaterniond q_wodom_curr(1, 0, 0, 0);
Eigen::Vector3d t_wodom_curr(0, 0, 0);
//接收缓存区
std::queue cornerLastBuf;
std::queue surfLastBuf;
std::queue fullResBuf;
std::queue odometryBuf;
std::mutex mBuf;
//降采样角点和面点
pcl::VoxelGrid downSizeFilterCorner;
pcl::VoxelGrid downSizeFilterSurf;
//KD-tree使用的找到点的序号和距离
std::vector pointSearchInd;
std::vector pointSearchSqDis;
//原点和KD-tree搜索的最邻近点
PointType pointOri, pointSel;
ros::Publisher pubLaserCloudSurround, pubLaserCloudMap, pubLaserCloudFullRes, pubOdomAftMapped, pubOdomAftMappedHighFrec, pubLaserAfterMappedPath;
nav_msgs::Path laserAfterMappedPath;
//上一帧的Transform(增量)wmap_wodom * 本帧Odometry位姿wodom_curr,旨在为本帧Mapping位姿w_curr设置一个初始值
//里程计位姿转化为地图位姿,作为后端初始估计
void transformAssociateToMap()
{
q_w_curr = q_wmap_wodom * q_wodom_curr;
t_w_curr = q_wmap_wodom * t_wodom_curr + t_wmap_wodom;
}
//利用mapping计算得到的pose,计算mapping线程和Odometry线程之间的pose变换
// wmap_T_odom * odom_T_curr = wmap_T_curr
// 用在最后,当Mapping的位姿w_curr计算完毕后,更新增量wmap_wodom,旨在为下一次执行transformAssociateToMap函数时做准备
// 更新odom到map之间的位姿变换
void transformUpdate()
{
q_wmap_wodom = q_w_curr * q_wodom_curr.inverse();
t_wmap_wodom = t_w_curr - q_wmap_wodom * t_wodom_curr;
}
//雷达坐标系点转化为地图点
// 用Mapping的位姿w_curr,将Lidar坐标系下的点变换到world坐标系下.q_w_curr为优化量,代表lidar在世界坐标系中的p
void pointAssociateToMap(PointType const *const pi, PointType *const po)
{
Eigen::Vector3d point_curr(pi->x, pi->y, pi->z);
Eigen::Vector3d point_w = q_w_curr * point_curr + t_w_curr;
po->x = point_w.x();
po->y = point_w.y();
po->z = point_w.z();
po->intensity = pi->intensity;
//po->intensity = 1.0;
}
//地图点转化到雷达坐标系点
//将map中world坐标系下的点变换到Lidar坐标系下,这个没有用到
void pointAssociateTobeMapped(PointType const *const pi, PointType *const po)
{
Eigen::Vector3d point_w(pi->x, pi->y, pi->z);
Eigen::Vector3d point_curr = q_w_curr.inverse() * (point_w - t_w_curr);
po->x = point_curr.x();
po->y = point_curr.y();
po->z = point_curr.z();
po->intensity = pi->intensity;
}
// 回调函数中将消息都是送入各自队列,进行线程加锁和解锁
void laserCloudCornerLastHandler(const sensor_msgs::PointCloud2ConstPtr &laserCloudCornerLast2)
{
mBuf.lock();
cornerLastBuf.push(laserCloudCornerLast2);
mBuf.unlock();
}
void laserCloudSurfLastHandler(const sensor_msgs::PointCloud2ConstPtr &laserCloudSurfLast2)
{
mBuf.lock();
surfLastBuf.push(laserCloudSurfLast2);
mBuf.unlock();
}
void laserCloudFullResHandler(const sensor_msgs::PointCloud2ConstPtr &laserCloudFullRes2)
{
mBuf.lock();
fullResBuf.push(laserCloudFullRes2);
mBuf.unlock();
}
//Odometry的回调函数
//接受前端发送过来的里程计话题,并将位姿转换到世界坐标系下后发布
void laserOdometryHandler(const nav_msgs::Odometry::ConstPtr &laserOdometry)
{
mBuf.lock();
odometryBuf.push(laserOdometry);
mBuf.unlock();
// 获取里程计位姿
Eigen::Quaterniond q_wodom_curr;
Eigen::Vector3d t_wodom_curr;
q_wodom_curr.x() = laserOdometry->pose.pose.orientation.x;
q_wodom_curr.y() = laserOdometry->pose.pose.orientation.y;
q_wodom_curr.z() = laserOdometry->pose.pose.orientation.z;
q_wodom_curr.w() = laserOdometry->pose.pose.orientation.w;
t_wodom_curr.x() = laserOdometry->pose.pose.position.x;
t_wodom_curr.y() = laserOdometry->pose.pose.position.y;
t_wodom_curr.z() = laserOdometry->pose.pose.position.z;
// Odometry的位姿,旨在用Mapping位姿的初始值(也可以理解为预测值)来实时输出,进而实现LOAM整体的实时性
// 里程计坐标系位姿转化为地图坐标系位姿
Eigen::Quaterniond q_w_curr = q_wmap_wodom * q_wodom_curr;
Eigen::Vector3d t_w_curr = q_wmap_wodom * t_wodom_curr + t_wmap_wodom;
// 发布出去
nav_msgs::Odometry odomAftMapped;
odomAftMapped.header.frame_id = "/camera_init";
odomAftMapped.child_frame_id = "/aft_mapped";
odomAftMapped.header.stamp = laserOdometry->header.stamp;
odomAftMapped.pose.pose.orientation.x = q_w_curr.x();
odomAftMapped.pose.pose.orientation.y = q_w_curr.y();
odomAftMapped.pose.pose.orientation.z = q_w_curr.z();
odomAftMapped.pose.pose.orientation.w = q_w_curr.w();
odomAftMapped.pose.pose.position.x = t_w_curr.x();
odomAftMapped.pose.pose.position.y = t_w_curr.y();
odomAftMapped.pose.pose.position.z = t_w_curr.z();
pubOdomAftMappedHighFrec.publish(odomAftMapped);
}
//进行Mapping,即帧与submap的匹配,对Odometry计算的位姿进行finetune
void process()
{
while(1)
{
// 四个队列分别存放边线点、平面点、全部点、和里程计位姿,要确保需要的buffer里都有值
// laserOdometry模块对本节点的执行频率进行了控制,laserOdometry模块publish的位姿是10Hz,点云的publish频率没这么高,限制是2hz
while (!cornerLastBuf.empty() && !surfLastBuf.empty() &&
!fullResBuf.empty() && !odometryBuf.empty())
{
mBuf.lock();//线程加锁,避免线程冲突
// 以cornerLastBuf为基准,把时间戳小于其的全部pop出去,保证其他容器的最新消息与cornerLastBuf.front()最新消息时间戳同步
//如果里程计信息不为空,里程计时间戳小于角特征时间戳则取出里程计数据
while (!odometryBuf.empty() && odometryBuf.front()->header.stamp.toSec() < cornerLastBuf.front()->header.stamp.toSec())
odometryBuf.pop();
//如果里程计信息为空跳出本次循环
if (odometryBuf.empty())
{
mBuf.unlock();
break;
}
//如果面特征信息不为空,面特征时间戳小于角特征时间戳则取出面特征数据
while (!surfLastBuf.empty() && surfLastBuf.front()->header.stamp.toSec() < cornerLastBuf.front()->header.stamp.toSec())
surfLastBuf.pop();
if (surfLastBuf.empty())//如果面特征信息为空跳出本次循环
{
mBuf.unlock();
break;
}
//如果全部点信息不为空,全部点云时间戳小于角特征时间戳则取出全部点云信息
while (!fullResBuf.empty() && fullResBuf.front()->header.stamp.toSec() < cornerLastBuf.front()->header.stamp.toSec())
fullResBuf.pop();
if (fullResBuf.empty())//全部点云信息为空则跳出
{
mBuf.unlock();
break;
}
//记录时间戳
timeLaserCloudCornerLast = cornerLastBuf.front()->header.stamp.toSec();
timeLaserCloudSurfLast = surfLastBuf.front()->header.stamp.toSec();
timeLaserCloudFullRes = fullResBuf.front()->header.stamp.toSec();
timeLaserOdometry = odometryBuf.front()->header.stamp.toSec();
//再次判定时间戳是否一致
if (timeLaserCloudCornerLast != timeLaserOdometry ||
timeLaserCloudSurfLast != timeLaserOdometry ||
timeLaserCloudFullRes != timeLaserOdometry)
{
printf("time corner %f surf %f full %f odom %f \n", timeLaserCloudCornerLast, timeLaserCloudSurfLast, timeLaserCloudFullRes, timeLaserOdometry);
printf("unsync messeage!");
mBuf.unlock();
break;
}
//清空上次角特征点云,并接收新的
// 点云全部转成pcl的数据格式
laserCloudCornerLast->clear();
pcl::fromROSMsg(*cornerLastBuf.front(), *laserCloudCornerLast);
cornerLastBuf.pop();
//清空上次面特征点云,并接收新的
// 点云全部转成pcl的数据格式
laserCloudSurfLast->clear();
pcl::fromROSMsg(*surfLastBuf.front(), *laserCloudSurfLast);
surfLastBuf.pop();
//清空上次全部点云,并接收新的
// 点云全部转成pcl的数据格式
laserCloudFullRes->clear();
pcl::fromROSMsg(*fullResBuf.front(), *laserCloudFullRes);
fullResBuf.pop();
//接收里程计坐标系下的四元数与位移
// lidar odom的结果转成eigen数据格式
q_wodom_curr.x() = odometryBuf.front()->pose.pose.orientation.x;
q_wodom_curr.y() = odometryBuf.front()->pose.pose.orientation.y;
q_wodom_curr.z() = odometryBuf.front()->pose.pose.orientation.z;
q_wodom_curr.w() = odometryBuf.front()->pose.pose.orientation.w;
t_wodom_curr.x() = odometryBuf.front()->pose.pose.position.x;
t_wodom_curr.y() = odometryBuf.front()->pose.pose.position.y;
t_wodom_curr.z() = odometryBuf.front()->pose.pose.position.z;
odometryBuf.pop();
// 考虑到实时性,Mapping线程耗时>100ms导致的队列里缓存的其他边线点都pop出去,不然可能出现处理延时的情况
//角特征不为空,堆入角特征,输出目前运行实时
while(!cornerLastBuf.empty())
{
cornerLastBuf.pop();//.pop:删除堆栈中的最新元素
printf("drop lidar frame in mapping for real time performance \n");
}
mBuf.unlock();
TicToc t_whole;//计算这个线程的全部时间
//根据odo_to_map和point_to_odo求point_to_map
// 上一帧的增量wmap_wodom * 本帧Odometry位姿wodom_curr,旨在为本帧Mapping位姿w_curr设置一个初始
transformAssociateToMap();// 第一次运行时,wmap_wodom=E
TicToc t_shift; //计算位姿转换的时间
// 下面这是计算当前帧位置t_w_curr(在上图中用红色五角星表示的位置)IJK坐标(见上图中的坐标轴),
// 参照LOAM_NOTED的注释,下面有关25呀,50啥的运算,等效于以50m为单位进行缩放,因为LOAM用1维数组进行cube的管理,
//而数组的index只用是正数,所以要保证IJK坐标都是正数,所以加了laserCloudCenWidth/Heigh/Depth的偏移,
//来使得当前位置尽量位于submap的中心处,也就是使得上图中的五角星位置尽量处于所有格子的中心附近,
// 偏移laserCloudCenWidth/Heigh/Depth会动态调整,来保证当前位置尽量位于submap的中心处。
//由于数组下标只能为正
//将当前激光雷达(视角)的位置作为中心点,添加一个laserCloudCenWidth的偏移使center为正
int centerCubeI = int((t_w_curr.x() + 25.0) / 50.0) + laserCloudCenWidth;
int centerCubeJ = int((t_w_curr.y() + 25.0) / 50.0) + laserCloudCenHeight;
int centerCubeK = int((t_w_curr.z() + 25.0) / 50.0) + laserCloudCenDepth;
// 由于计算机求余是向零取整,为了不使(-50.0,50.0)求余后都向零偏移,当被求余数为负数时求余结果统一向左偏移一个单位,也即减一
// 如果小于25就向下去整,相当于四舍五入的一个过程
//由于int始终向0取整,所以t_w小于-25时,要修正其取整方向,使得所有取整方向一致
if (t_w_curr.x() + 25.0 < 0)
centerCubeI--;
if (t_w_curr.y() + 25.0 < 0)
centerCubeJ--;
if (t_w_curr.z() + 25.0 < 0)
centerCubeK--;
// 以下注释部分参照LOAM_NOTED,结合submap的示意图说明下面的6个while loop的作用:
//要注意世界坐标系下的点云地图是固定的,但是IJK坐标系我们是可以移动的,
//所以这6个while loop的作用就是调整IJK坐标系(也就是调整所有cube位置),
//使得五角星在IJK坐标系的坐标范围处于3 <= centerCubeI < 18, 3 < centerCubeJ < 8, 3 < centerCubeK < 18,
//目的是为了防止后续向四周拓展cube(图中的黄色cube就是拓展的cube)时,index(即IJK坐标)成为负数。
// 如果当前珊格索引小于3,就说明当前点快接近地图边界了,需要进行调整,相当于地图整体往x正方向移动
while (centerCubeI < 3)
{
for (int j = 0; j < laserCloudHeight; j++)
{
for (int k = 0; k < laserCloudDepth; k++)
{
int i = laserCloudWidth - 1;//指针赋值,保存最后一个指针位置
// 从x最大值开始
pcl::PointCloud::Ptr laserCloudCubeCornerPointer =
laserCloudCornerArray[i + laserCloudWidth * j + laserCloudWidth * laserCloudHeight * k];
pcl::PointCloud::Ptr laserCloudCubeSurfPointer =
laserCloudSurfArray[i + laserCloudWidth * j + laserCloudWidth * laserCloudHeight * k];
//循环移位,I维度上依次后移
for (; i >= 1; i--)
{
laserCloudCornerArray[i + laserCloudWidth * j + laserCloudWidth * laserCloudHeight * k] =
laserCloudCornerArray[i - 1 + laserCloudWidth * j + laserCloudWidth * laserCloudHeight * k];
laserCloudSurfArray[i + laserCloudWidth * j + laserCloudWidth * laserCloudHeight * k] =
laserCloudSurfArray[i - 1 + laserCloudWidth * j + laserCloudWidth * laserCloudHeight * k];
}
//将开始点赋值为最后一个点
laserCloudCornerArray[i + laserCloudWidth * j + laserCloudWidth * laserCloudHeight * k] =
laserCloudCubeCornerPointer;
laserCloudSurfArray[i + laserCloudWidth * j + laserCloudWidth * laserCloudHeight * k] =
laserCloudCubeSurfPointer;
// 该点云清零,由于是指针 *** 作,相当于最左边的格子清空了
laserCloudCubeCornerPointer->clear();
laserCloudCubeSurfPointer->clear();
}
}
// 索引右移
centerCubeI++;
laserCloudCenWidth++;
}
// 同理x如果抵达右边界,就整体左移
while (centerCubeI >= laserCloudWidth - 3)
{
for (int j = 0; j < laserCloudHeight; j++)
{
for (int k = 0; k < laserCloudDepth; k++)
{
int i = 0;
pcl::PointCloud::Ptr laserCloudCubeCornerPointer =
laserCloudCornerArray[i + laserCloudWidth * j + laserCloudWidth * laserCloudHeight * k];
pcl::PointCloud::Ptr laserCloudCubeSurfPointer =
laserCloudSurfArray[i + laserCloudWidth * j + laserCloudWidth * laserCloudHeight * k];
for (; i < laserCloudWidth - 1; i++)
{
laserCloudCornerArray[i + laserCloudWidth * j + laserCloudWidth * laserCloudHeight * k] =
laserCloudCornerArray[i + 1 + laserCloudWidth * j + laserCloudWidth * laserCloudHeight * k];
laserCloudSurfArray[i + laserCloudWidth * j + laserCloudWidth * laserCloudHeight * k] =
laserCloudSurfArray[i + 1 + laserCloudWidth * j + laserCloudWidth * laserCloudHeight * k];
}
laserCloudCornerArray[i + laserCloudWidth * j + laserCloudWidth * laserCloudHeight * k] =
laserCloudCubeCornerPointer;
laserCloudSurfArray[i + laserCloudWidth * j + laserCloudWidth * laserCloudHeight * k] =
laserCloudCubeSurfPointer;
laserCloudCubeCornerPointer->clear();
laserCloudCubeSurfPointer->clear();
}
}
centerCubeI--;
laserCloudCenWidth--;
}
// y和z的 *** 作同理
while (centerCubeJ < 3)
{
for (int i = 0; i < laserCloudWidth; i++)
{
for (int k = 0; k < laserCloudDepth; k++)
{
int j = laserCloudHeight - 1;
pcl::PointCloud::Ptr laserCloudCubeCornerPointer =
laserCloudCornerArray[i + laserCloudWidth * j + laserCloudWidth * laserCloudHeight * k];
pcl::PointCloud::Ptr laserCloudCubeSurfPointer =
laserCloudSurfArray[i + laserCloudWidth * j + laserCloudWidth * laserCloudHeight * k];
for (; j >= 1; j--)
{
laserCloudCornerArray[i + laserCloudWidth * j + laserCloudWidth * laserCloudHeight * k] =
laserCloudCornerArray[i + laserCloudWidth * (j - 1) + laserCloudWidth * laserCloudHeight * k];
laserCloudSurfArray[i + laserCloudWidth * j + laserCloudWidth * laserCloudHeight * k] =
laserCloudSurfArray[i + laserCloudWidth * (j - 1) + laserCloudWidth * laserCloudHeight * k];
}
laserCloudCornerArray[i + laserCloudWidth * j + laserCloudWidth * laserCloudHeight * k] =
laserCloudCubeCornerPointer;
laserCloudSurfArray[i + laserCloudWidth * j + laserCloudWidth * laserCloudHeight * k] =
laserCloudCubeSurfPointer;
laserCloudCubeCornerPointer->clear();
laserCloudCubeSurfPointer->clear();
}
}
centerCubeJ++;
laserCloudCenHeight++;
}
while (centerCubeJ >= laserCloudHeight - 3)
{
for (int i = 0; i < laserCloudWidth; i++)
{
for (int k = 0; k < laserCloudDepth; k++)
{
int j = 0;
pcl::PointCloud::Ptr laserCloudCubeCornerPointer =
laserCloudCornerArray[i + laserCloudWidth * j + laserCloudWidth * laserCloudHeight * k];
pcl::PointCloud::Ptr laserCloudCubeSurfPointer =
laserCloudSurfArray[i + laserCloudWidth * j + laserCloudWidth * laserCloudHeight * k];
for (; j < laserCloudHeight - 1; j++)
{
laserCloudCornerArray[i + laserCloudWidth * j + laserCloudWidth * laserCloudHeight * k] =
laserCloudCornerArray[i + laserCloudWidth * (j + 1) + laserCloudWidth * laserCloudHeight * k];
laserCloudSurfArray[i + laserCloudWidth * j + laserCloudWidth * laserCloudHeight * k] =
laserCloudSurfArray[i + laserCloudWidth * (j + 1) + laserCloudWidth * laserCloudHeight * k];
}
laserCloudCornerArray[i + laserCloudWidth * j + laserCloudWidth * laserCloudHeight * k] =
laserCloudCubeCornerPointer;
laserCloudSurfArray[i + laserCloudWidth * j + laserCloudWidth * laserCloudHeight * k] =
laserCloudCubeSurfPointer;
laserCloudCubeCornerPointer->clear();
laserCloudCubeSurfPointer->clear();
}
}
centerCubeJ--;
laserCloudCenHeight--;
}
while (centerCubeK < 3)
{
for (int i = 0; i < laserCloudWidth; i++)
{
for (int j = 0; j < laserCloudHeight; j++)
{
int k = laserCloudDepth - 1;
pcl::PointCloud::Ptr laserCloudCubeCornerPointer =
laserCloudCornerArray[i + laserCloudWidth * j + laserCloudWidth * laserCloudHeight * k];
pcl::PointCloud::Ptr laserCloudCubeSurfPointer =
laserCloudSurfArray[i + laserCloudWidth * j + laserCloudWidth * laserCloudHeight * k];
for (; k >= 1; k--)
{
laserCloudCornerArray[i + laserCloudWidth * j + laserCloudWidth * laserCloudHeight * k] =
laserCloudCornerArray[i + laserCloudWidth * j + laserCloudWidth * laserCloudHeight * (k - 1)];
laserCloudSurfArray[i + laserCloudWidth * j + laserCloudWidth * laserCloudHeight * k] =
laserCloudSurfArray[i + laserCloudWidth * j + laserCloudWidth * laserCloudHeight * (k - 1)];
}
laserCloudCornerArray[i + laserCloudWidth * j + laserCloudWidth * laserCloudHeight * k] =
laserCloudCubeCornerPointer;
laserCloudSurfArray[i + laserCloudWidth * j + laserCloudWidth * laserCloudHeight * k] =
laserCloudCubeSurfPointer;
laserCloudCubeCornerPointer->clear();
laserCloudCubeSurfPointer->clear();
}
}
centerCubeK++;
laserCloudCenDepth++;
}
while (centerCubeK >= laserCloudDepth - 3)
{
for (int i = 0; i < laserCloudWidth; i++)
{
for (int j = 0; j < laserCloudHeight; j++)
{
int k = 0;
pcl::PointCloud::Ptr laserCloudCubeCornerPointer =
laserCloudCornerArray[i + laserCloudWidth * j + laserCloudWidth * laserCloudHeight * k];
pcl::PointCloud::Ptr laserCloudCubeSurfPointer =
laserCloudSurfArray[i + laserCloudWidth * j + laserCloudWidth * laserCloudHeight * k];
for (; k < laserCloudDepth - 1; k++)
{
laserCloudCornerArray[i + laserCloudWidth * j + laserCloudWidth * laserCloudHeight * k] =
laserCloudCornerArray[i + laserCloudWidth * j + laserCloudWidth * laserCloudHeight * (k + 1)];
laserCloudSurfArray[i + laserCloudWidth * j + laserCloudWidth * laserCloudHeight * k] =
laserCloudSurfArray[i + laserCloudWidth * j + laserCloudWidth * laserCloudHeight * (k + 1)];
}
laserCloudCornerArray[i + laserCloudWidth * j + laserCloudWidth * laserCloudHeight * k] =
laserCloudCubeCornerPointer;
laserCloudSurfArray[i + laserCloudWidth * j + laserCloudWidth * laserCloudHeight * k] =
laserCloudCubeSurfPointer;
laserCloudCubeCornerPointer->clear();
laserCloudCubeSurfPointer->clear();
}
}
centerCubeK--;
laserCloudCenDepth--;
}
// 以上 *** 作相当于维护了一个局部地图,保证当前帧不在这个局部地图的边缘,这样才可以从地图中获取足够的约束
int laserCloudValidNum = 0;
int laserCloudSurroundNum = 0;
// 从当前格子为中心,选出地图中一定范围的点云
// 即向IJ坐标轴的正负方向各拓展2个栅格,K坐标轴的正负方向各拓展1个栅格
// 在每一维附近5个栅格(前2个,后2个,中间1个)里进行查找(前后250米范围内,总共500米范围),三个维度总共125个栅格
// 在这125个栅格里面进一步筛选在视域范围内的栅格
for (int i = centerCubeI - 2; i <= centerCubeI + 2; i++)
{
for (int j = centerCubeJ - 2; j <= centerCubeJ + 2; j++)
{
for (int k = centerCubeK - 1; k <= centerCubeK + 1; k++)
{
// 如果坐标合理
if (i >= 0 && i < laserCloudWidth &&
j >= 0 && j < laserCloudHeight &&
k >= 0 && k < laserCloudDepth)
{
//记住视域范围内的cube索引,匹配用
laserCloudValidInd[laserCloudValidNum] = i + laserCloudWidth * j + laserCloudWidth * laserCloudHeight * k;
laserCloudValidNum++;
//记住附近所有cube的索引,显示用
laserCloudSurroundInd[laserCloudSurroundNum] = i + laserCloudWidth * j + laserCloudWidth * laserCloudHeight * k;
laserCloudSurroundNum++;
}
}
}
}
laserCloudCornerFromMap->clear();
laserCloudSurfFromMap->clear();
//将有效栅格的点云叠加到一起组成submap子地图的特征点云,构建用来这一帧优化的局部地图
for (int i = 0; i < laserCloudValidNum; i++)
{
*laserCloudCornerFromMap += *laserCloudCornerArray[laserCloudValidInd[i]];
*laserCloudSurfFromMap += *laserCloudSurfArray[laserCloudValidInd[i]];
}
int laserCloudCornerFromMapNum = laserCloudCornerFromMap->points.size();
int laserCloudSurfFromMapNum = laserCloudSurfFromMap->points.size();
// -------------------至此,得到当前帧的局部地图的特征点云-------------------
// 为了减少运算量,对点云进行降采样(此次的下采样是对当前帧的下采样,并非地图的下采样)
pcl::PointCloud::Ptr laserCloudCornerStack(new pcl::PointCloud());
downSizeFilterCorner.setInputCloud(laserCloudCornerLast);
downSizeFilterCorner.filter(*laserCloudCornerStack);
int laserCloudCornerStackNum = laserCloudCornerStack->points.size();
pcl::PointCloud::Ptr laserCloudSurfStack(new pcl::PointCloud());
downSizeFilterSurf.setInputCloud(laserCloudSurfLast);
downSizeFilterSurf.filter(*laserCloudSurfStack);
int laserCloudSurfStackNum = laserCloudSurfStack->points.size();
printf("map prepare time %f ms\n", t_shift.toc());//打印位姿转换的时间
printf("map corner num %d surf num %d \n", laserCloudCornerFromMapNum, laserCloudSurfFromMapNum);
//下面是后端Scan to Map的匹配优化。
Submap子地图的网格与全部地图的网格进行匹配时
//这里的匹配方法如下
//1. 取当前帧的特征点(边线点/平面点)
//2. 找到全部地图特征点中,当前特征点的5个最近邻点。
//3. 如果是边线点,则以这五个点的均值点为中心,以5个点的主方向向量(类似于PCA方法)为方向,
//作一条直线,令该边线点与直线距离最短,构建非线性优化问题。
//4. 如果是平面点,则寻找五个点的法方向(反向的PCA方法),
//令这个平面点在法方向上与五个近邻点的距离最小,构建非线性优化问题。
//5. 优化变量是雷达位姿,求解能够让以上非线性问题代价函数最小的雷达位姿
// 最终的地图有效点云数目进行判断
if (laserCloudCornerFromMapNum > 10 && laserCloudSurfFromMapNum > 50)
{
TicToc t_opt;//计算优化时间
TicToc t_tree;//计算KD-tree搜索时间
// 送入kdtree便于最近邻搜索
kdtreeCornerFromMap->setInputCloud(laserCloudCornerFromMap);
kdtreeSurfFromMap->setInputCloud(laserCloudSurfFromMap);
printf("build tree time %f ms \n", t_tree.toc());
//优化两次,第二次在第一次得到的pose上进行
for (int iterCount = 0; iterCount < 2; iterCount++)
{
// 建立ceres问题
ceres::LossFunction *loss_function = new ceres::HuberLoss(0.1);
ceres::LocalParameterization *q_parameterization =
new ceres::EigenQuaternionParameterization();
ceres::Problem::Options problem_options;
ceres::Problem problem(problem_options);
problem.AddParameterBlock(parameters, 4, q_parameterization);
problem.AddParameterBlock(parameters + 4, 3);
TicToc t_data;//计算建图数据点关联的时间
int corner_num = 0;
// 构建边线点(角点)相关的约束
for (int i = 0; i < laserCloudCornerStackNum; i++)
{
pointOri = laserCloudCornerStack->points[i];
//double sqrtDis = pointOri.x * pointOri.x + pointOri.y * pointOri.y + pointOri.z * pointOri.z;
// 需要注意的是submap中的点云都是world坐标系,而当前帧的点云都是Lidar坐标系,所以
// 在搜寻最近邻点时,先用预测的Mapping位姿w_curr,将Lidar坐标系下的特征点变换到world坐标系下
// 把当前点根据初值投到地图坐标系下去
pointAssociateToMap(&pointOri, &pointSel);
// 地图中寻找和该点最近的5个点
// 在submap的corner特征点(target)中,寻找距离当前帧corner特征点(source)最近的5个点
kdtreeCornerFromMap->nearestKSearch(pointSel, 5, pointSearchInd, pointSearchSqDis);
// 判断最远的点距离不能超过1m,否则就是无效约束
if (pointSearchSqDis[4] < 1.0)
{
// 计算这个5个最近邻点的中心
std::vector nearCorners;
Eigen::Vector3d center(0, 0, 0);
for (int j = 0; j < 5; j++)
{
Eigen::Vector3d tmp(laserCloudCornerFromMap->points[pointSearchInd[j]].x,
laserCloudCornerFromMap->points[pointSearchInd[j]].y,
laserCloudCornerFromMap->points[pointSearchInd[j]].z);
center = center + tmp;
nearCorners.push_back(tmp);
}
// 计算这五个点的均值
center = center / 5.0;
// 计算这个5个最近邻点的协方差矩阵
Eigen::Matrix3d covMat = Eigen::Matrix3d::Zero();
for (int j = 0; j < 5; j++)
{
Eigen::Matrix tmpZeroMean = nearCorners[j] - center;
covMat = covMat + tmpZeroMean * tmpZeroMean.transpose();
}
// 进行特征值分解
//计算协方差矩阵的特征值和特征向量,用于判断这5个点是不是呈线状分布,此为PCA的原理
Eigen::SelfAdjointEigenSolver saes(covMat);
// if is indeed line feature
// note Eigen library sort eigenvalues in increasing order
// PCA的原理:计算协方差矩阵的特征值和特征向量,用于判断这5个点是不是呈线状分布
// 根据特征值分解情况看看是不是真正的线特征
// 特征向量就是线特征的方向
Eigen::Vector3d unit_direction = saes.eigenvectors().col(2);
// 如果5个点呈线状分布,最大的特征值对应的特征向量就是该线的方向向量
Eigen::Vector3d curr_point(pointOri.x, pointOri.y, pointOri.z);
//如果最大的特征值 >> 其他特征值,则5个点确实呈线状分布,否则认为直线“不够直”
// 最大特征值大于次大特征值的3倍认为是线特征
if (saes.eigenvalues()[2] > 3 * saes.eigenvalues()[1])
{
Eigen::Vector3d point_on_line = center;
Eigen::Vector3d point_a, point_b;
// 根据拟合出来的线特征方向,以平均点为中心构建两个虚拟点,代替一条直线
// 从中心点沿着方向向量向两端移动0.1m,使用两个点代替一条直线,
//这样计算点到直线的距离的形式就跟laserOdometry中保持一致
point_a = 0.1 * unit_direction + point_on_line;
point_b = -0.1 * unit_direction + point_on_line;
// 这里点到线的ICP过程就比Odometry中的要鲁棒和准确一些了(当然也就更耗时一些)
// 因为不是简单粗暴地搜最近的两个corner点作为target的线,
//而是PCA计算出最近邻的5个点的主方向作为线的方向,而且还会check直线是不是“足够直”
// 构建约束,和lidar odom约束一致
ceres::CostFunction *cost_function = LidarEdgeFactor::Create(curr_point, point_a, point_b, 1.0);
problem.AddResidualBlock(cost_function, loss_function, parameters, parameters + 4);
corner_num++;
}
}
/*
else if(pointSearchSqDis[4] < 0.01 * sqrtDis)
{
Eigen::Vector3d center(0, 0, 0);
for (int j = 0; j < 5; j++)
{
Eigen::Vector3d tmp(laserCloudCornerFromMap->points[pointSearchInd[j]].x,
laserCloudCornerFromMap->points[pointSearchInd[j]].y,
laserCloudCornerFromMap->points[pointSearchInd[j]].z);
center = center + tmp;
}
center = center / 5.0;
Eigen::Vector3d curr_point(pointOri.x, pointOri.y, pointOri.z);
ceres::CostFunction *cost_function = LidarDistanceFactor::Create(curr_point, center);
problem.AddResidualBlock(cost_function, loss_function, parameters, parameters + 4);
}
*/
}
//根据法线判断是否为面特征
int surf_num = 0;
for (int i = 0; i < laserCloudSurfStackNum; i++)
{
pointOri = laserCloudSurfStack->points[i];
//double sqrtDis = pointOri.x * pointOri.x + pointOri.y * pointOri.y + pointOri.z * pointOri.z;
pointAssociateToMap(&pointOri, &pointSel);
kdtreeSurfFromMap->nearestKSearch(pointSel, 5, pointSearchInd, pointSearchSqDis);
// 求面的法向量就不是用的PCA了(虽然论文中说还是PCA),使用的是最小二乘拟合
// 假设平面不通过原点,则平面的一般方程为Ax + By + Cz + 1 = 0,用这个假设可以少算一个参数,提效
Eigen::Matrix matA0;
Eigen::Matrix matB0 = -1 * Eigen::Matrix::Ones();
// 构建平面方程Ax + By +Cz + 1 = 0
// 通过构建一个超定方程来求解这个平面方程
if (pointSearchSqDis[4] < 1.0)
{
for (int j = 0; j < 5; j++)
{
matA0(j, 0) = laserCloudSurfFromMap->points[pointSearchInd[j]].x;
matA0(j, 1) = laserCloudSurfFromMap->points[pointSearchInd[j]].y;
matA0(j, 2) = laserCloudSurfFromMap->points[pointSearchInd[j]].z;
}
// 调用eigen接口求解该方程,解就是这个平面的法向量
Eigen::Vector3d norm = matA0.colPivHouseholderQr().solve(matB0);
double negative_OA_dot_norm = 1 / norm.norm();// 法向量长度的倒数
norm.normalize();// 法向量归一化
// Here n(pa, pb, pc) is unit norm of plane
bool planeValid = true;
// 根据求出来的平面方程进行校验,看看是不是符合平面约束
for (int j = 0; j < 5; j++)
{
// if OX * n > 0.2, then plane is not fit well
// 这里是求解点到平面的距离
// 点(x0, y0, z0)到平面Ax + By + Cz + D = 0 的距离公式 = fabs(Ax0 + By0 + Cz0 + D) / sqrt(A^2 + B^2 + C^2)
if (fabs(norm(0) * laserCloudSurfFromMap->points[pointSearchInd[j]].x +
norm(1) * laserCloudSurfFromMap->points[pointSearchInd[j]].y +
norm(2) * laserCloudSurfFromMap->points[pointSearchInd[j]].z + negative_OA_dot_norm) > 0.2)
{
planeValid = false;// 点如果距离平面太远,就认为这是一个拟合的不好的平面
break;
}
}
Eigen::Vector3d curr_point(pointOri.x, pointOri.y, pointOri.z);
// 如果平面有效就构建平面约束
if (planeValid)
{
// 利用平面方程构建约束,和前端构建形式稍有不同
ceres::CostFunction *cost_function = LidarPlaneNormFactor::Create(curr_point, norm, negative_OA_dot_norm);
problem.AddResidualBlock(cost_function, loss_function, parameters, parameters + 4);
surf_num++;
}
}
/*
else if(pointSearchSqDis[4] < 0.01 * sqrtDis)
{
Eigen::Vector3d center(0, 0, 0);
for (int j = 0; j < 5; j++)
{
Eigen::Vector3d tmp(laserCloudSurfFromMap->points[pointSearchInd[j]].x,
laserCloudSurfFromMap->points[pointSearchInd[j]].y,
laserCloudSurfFromMap->points[pointSearchInd[j]].z);
center = center + tmp;
}
center = center / 5.0;
Eigen::Vector3d curr_point(pointOri.x, pointOri.y, pointOri.z);
ceres::CostFunction *cost_function = LidarDistanceFactor::Create(curr_point, center);
problem.AddResidualBlock(cost_function, loss_function, parameters, parameters + 4);
}
*/
}
//printf("corner num %d used corner num %d \n", laserCloudCornerStackNum, corner_num);
//printf("surf num %d used surf num %d \n", laserCloudSurfStackNum, surf_num);
printf("mapping data assosiation time %f ms \n", t_data.toc());
// 调用ceres求解
TicToc t_solver;
ceres::Solver::Options options;
options.linear_solver_type = ceres::DENSE_QR;
options.max_num_iterations = 4;
options.minimizer_progress_to_stdout = false;
options.check_gradients = false;
options.gradient_check_relative_precision = 1e-4;
ceres::Solver::Summary summary;
ceres::Solve(options, &problem, &summary);
printf("mapping solver time %f ms \n", t_solver.toc());
//printf("time %f \n", timeLaserOdometry);
//printf("corner factor num %d surf factor num %d\n", corner_num, surf_num);
//printf("result q %f %f %f %f result t %f %f %f\n", parameters[3], parameters[0], parameters[1], parameters[2],
// parameters[4], parameters[5], parameters[6]);
}
printf("mapping optimization time %f \n", t_opt.toc());//打印建图数据关联时间
}
else
{
ROS_WARN("time Map corner and surf num are not enough");
}
//更新mapping到Odometry线程的T
// 完成ICP(迭代2次)的特征匹配后,用最后匹配计算出的优化变量 w_curr,更新增量wmap_wodom,为下一次
// Mapping做准备
//迭代结束更新相关的转移矩阵
transformUpdate();// 获取map到odom的变换Transform
//下面是一些后处理的工作,即将当前帧的特征点加入到全部地图栅格中,对全部地图栅格中的点进行降采样,
//刷新附近点云地图,刷新全部点云地图,发布当前帧的精确位姿和平移估计
TicToc t_add;//计算增加特征点的时间
// 下面两个for loop的作用就是将当前帧的特征点云,逐点进行 *** 作:转换到world坐标系并添加到对应位置的cube中
// 将优化后的当前帧边线点(角点)加到对应的边线点局部地图中去
// 将当前帧的(次极大边线点云,经过降采样后的)存入对应的边线点云的cube
for (int i = 0; i < laserCloudCornerStackNum; i++)
{
pointAssociateToMap(&laserCloudCornerStack->points[i], &pointSel);//转移到世界坐标系
//按50的比例尺缩小,四舍五入,偏移laserCloudCen*的量,计算索引
int cubeI = int((pointSel.x + 25.0) / 50.0) + laserCloudCenWidth;
int cubeJ = int((pointSel.y + 25.0) / 50.0) + laserCloudCenHeight;
int cubeK = int((pointSel.z + 25.0) / 50.0) + laserCloudCenDepth;
// 同样四舍五入一下
if (pointSel.x + 25.0 < 0)
cubeI--;
if (pointSel.y + 25.0 < 0)
cubeJ--;
if (pointSel.z + 25.0 < 0)
cubeK--;
//只挑选-laserCloudCenWidth * 50.0 < point.x < laserCloudCenWidth * 50.0范围内的点,y和z同理
// 如果超过边界的话就算了
//按照尺度放进不同的组,每个组的点数量各异
if (cubeI >= 0 && cubeI < laserCloudWidth &&
cubeJ >= 0 && cubeJ < laserCloudHeight &&
cubeK >= 0 && cubeK < laserCloudDepth)
{
// 根据xyz的索引计算在一位数组中的索引
int cubeInd = cubeI + laserCloudWidth * cubeJ + laserCloudWidth * laserCloudHeight * cubeK;
laserCloudCornerArray[cubeInd]->push_back(pointSel);
}
}
// 将当前帧的(次极小平面点云,经过降采样后的)存入对应的平面点云的cube
for (int i = 0; i < laserCloudSurfStackNum; i++)
{
pointAssociateToMap(&laserCloudSurfStack->points[i], &pointSel);
int cubeI = int((pointSel.x + 25.0) / 50.0) + laserCloudCenWidth;
int cubeJ = int((pointSel.y + 25.0) / 50.0) + laserCloudCenHeight;
int cubeK = int((pointSel.z + 25.0) / 50.0) + laserCloudCenDepth;
if (pointSel.x + 25.0 < 0)
cubeI--;
if (pointSel.y + 25.0 < 0)
cubeJ--;
if (pointSel.z + 25.0 < 0)
cubeK--;
if (cubeI >= 0 && cubeI < laserCloudWidth &&
cubeJ >= 0 && cubeJ < laserCloudHeight &&
cubeK >= 0 && cubeK < laserCloudDepth)
{
int cubeInd = cubeI + laserCloudWidth * cubeJ + laserCloudWidth * laserCloudHeight * cubeK;
laserCloudSurfArray[cubeInd]->push_back(pointSel);
}
}
printf("add points time %f ms\n", t_add.toc());//打印增加特征点的时间
TicToc t_filter;//计算降采样的时间
// 把当前帧涉及到的局部地图的珊格做一个下采样
// 因为新增加了点云,对之前已经存有点云的submap cube全部重新进行一次降采样
// 这个地方可以简单优化一下:如果之前的cube没有新添加点就不需要再降采样
// 这可以通过记录上一个循环中存入对应cubeInd的idx来实现
for (int i = 0; i < laserCloudValidNum; i++)
{
int ind = laserCloudValidInd[i];// submap中每一个cube的索引
// 判断当前的submap的cube id 是否在当前帧的索引的vector中
pcl::PointCloud::Ptr tmpCorner(new pcl::PointCloud());
downSizeFilterCorner.setInputCloud(laserCloudCornerArray[ind]);
downSizeFilterCorner.filter(*tmpCorner);
laserCloudCornerArray[ind] = tmpCorner;
pcl::PointCloud::Ptr tmpSurf(new pcl::PointCloud());
downSizeFilterSurf.setInputCloud(laserCloudSurfArray[ind]);
downSizeFilterSurf.filter(*tmpSurf);
laserCloudSurfArray[ind] = tmpSurf;
}
printf("filter time %f ms \n", t_filter.toc());//打印降采样的时间
TicToc t_pub;//计算发布地图话题数据的时间
//publish surround map for every 5 frame
// 每隔5帧对外发布一下
if (frameCount % 5 == 0)
{
laserCloudSurround->clear();
// 把该当前帧相关的局部地图发布出去
for (int i = 0; i < laserCloudSurroundNum; i++)
{
int ind = laserCloudSurroundInd[i];
*laserCloudSurround += *laserCloudCornerArray[ind];
*laserCloudSurround += *laserCloudSurfArray[ind];
}
sensor_msgs::PointCloud2 laserCloudSurround3;
pcl::toROSMsg(*laserCloudSurround, laserCloudSurround3);
laserCloudSurround3.header.stamp = ros::Time().fromSec(timeLaserOdometry);
laserCloudSurround3.header.frame_id = "/camera_init";
pubLaserCloudSurround.publish(laserCloudSurround3);
}
// 每隔20帧发布全量的局部地图
// 每20帧发布IJK局部地图
if (frameCount % 20 == 0)
{
pcl::PointCloud laserCloudMap;
for (int i = 0; i < 4851; i++)
{
laserCloudMap += *laserCloudCornerArray[i];
laserCloudMap += *laserCloudSurfArray[i];
}
sensor_msgs::PointCloud2 laserCloudMsg;
pcl::toROSMsg(laserCloudMap, laserCloudMsg);
laserCloudMsg.header.stamp = ros::Time().fromSec(timeLaserOdometry);
laserCloudMsg.header.frame_id = "/camera_init";
pubLaserCloudMap.publish(laserCloudMsg);
}
// 全部点云转化到world坐标系,并发布
int laserCloudFullResNum = laserCloudFullRes->points.size();
// 把当前帧发布出去
for (int i = 0; i < laserCloudFullResNum; i++)
{
pointAssociateToMap(&laserCloudFullRes->points[i], &laserCloudFullRes->points[i]);
}
sensor_msgs::PointCloud2 laserCloudFullRes3;
pcl::toROSMsg(*laserCloudFullRes, laserCloudFullRes3);
laserCloudFullRes3.header.stamp = ros::Time().fromSec(timeLaserOdometry);
laserCloudFullRes3.header.frame_id = "/camera_init";
pubLaserCloudFullRes.publish(laserCloudFullRes3);
printf("mapping pub time %f ms \n", t_pub.toc());//打印发布地图话题数据的时间
printf("whole mapping time %f ms +++++\n", t_whole.toc());
// 发布当前位姿
nav_msgs::Odometry odomAftMapped;
odomAftMapped.header.frame_id = "/camera_init";
odomAftMapped.child_frame_id = "/aft_mapped";
odomAftMapped.header.stamp = ros::Time().fromSec(timeLaserOdometry);
odomAftMapped.pose.pose.orientation.x = q_w_curr.x();
odomAftMapped.pose.pose.orientation.y = q_w_curr.y();
odomAftMapped.pose.pose.orientation.z = q_w_curr.z();
odomAftMapped.pose.pose.orientation.w = q_w_curr.w();
odomAftMapped.pose.pose.position.x = t_w_curr.x();
odomAftMapped.pose.pose.position.y = t_w_curr.y();
odomAftMapped.pose.pose.position.z = t_w_curr.z();
pubOdomAftMapped.publish(odomAftMapped);
// 发布当前轨迹
geometry_msgs::PoseStamped laserAfterMappedPose;
laserAfterMappedPose.header = odomAftMapped.header;
laserAfterMappedPose.pose = odomAftMapped.pose.pose;
laserAfterMappedPath.header.stamp = odomAftMapped.header.stamp;
laserAfterMappedPath.header.frame_id = "/camera_init";
laserAfterMappedPath.poses.push_back(laserAfterMappedPose);
pubLaserAfterMappedPath.publish(laserAfterMappedPath);
// 发布tf
static tf::TransformBroadcaster br;
tf::Transform transform;
tf::Quaternion q;
transform.setOrigin(tf::Vector3(t_w_curr(0),
t_w_curr(1),
t_w_curr(2)));
q.setW(q_w_curr.w());
q.setX(q_w_curr.x());
q.setY(q_w_curr.y());
q.setZ(q_w_curr.z());
transform.setRotation(q);
br.sendTransform(tf::StampedTransform(transform, odomAftMapped.header.stamp, "/camera_init", "/aft_mapped"));
frameCount++;
}
std::chrono::milliseconds dura(2);//延时2ms
std::this_thread::sleep_for(dura);
}
}
int main(int argc, char **argv)
{
ros::init(argc, argv, "laserMapping");//ros初始化
ros::NodeHandle nh;//ros句柄
float lineRes = 0;// 次极大边线点云体素滤波分辨率
float planeRes = 0;// 次极小平面点云体素滤波分辨率
nh.param("mapping_line_resolution", lineRes, 0.4);//通过lineRes给mapping_line_resolution参数赋值
nh.param("mapping_plane_resolution", planeRes, 0.8);
printf("line resolution %f plane resolution %f \n", lineRes, planeRes);
downSizeFilterCorner.setLeafSize(lineRes, lineRes,lineRes); //进行体素滤波实现降采样
downSizeFilterSurf.setLeafSize(planeRes, planeRes, planeRes);
// 从laserOdometry节点接收次极大边线点
ros::Subscriber subLaserCloudCornerLast = nh.subscribe("/laser_cloud_corner_last", 100, laserCloudCornerLastHandler);
// 从laserOdometry节点接收次极小平面点
ros::Subscriber subLaserCloudSurfLast = nh.subscribe("/laser_cloud_surf_last", 100, laserCloudSurfLastHandler);
// 从laserOdometry节点接收到的最新帧的位姿T_cur^w
ros::Subscriber subLaserOdometry = nh.subscribe("/laser_odom_to_init", 100, laserOdometryHandler);
// 从laserOdometry节点接收到的当前帧原始点云(只经过一次降采样)
ros::Subscriber subLaserCloudFullRes = nh.subscribe("/velodyne_cloud_3", 100, laserCloudFullResHandler);
//注册发布点云
// submap(子地图)所在cube(栅格)中的点云,发布周围5帧的点云(降采样以后的)
pubLaserCloudSurround = nh.advertise("/laser_cloud_surround", 100);
//map地图
pubLaserCloudMap = nh.advertise("/laser_cloud_map", 100);
// 当前帧原始点云
pubLaserCloudFullRes = nh.advertise("/velodyne_cloud_registered", 100);
//经过Map to Map精估计优化后的当前帧位姿
pubOdomAftMapped = nh.advertise("/aft_mapped_to_init", 100);
// 将里程计坐标系位姿转化到世界坐标系位姿(地图坐标系),相当于位姿优化初值,即Odometry odom 到 map
pubOdomAftMappedHighFrec = nh.advertise("/aft_mapped_to_init_high_frec", 100);
// 经过Map to Map精估计优化后的当前帧平移
pubLaserAfterMappedPath = nh.advertise("/aft_mapped_path", 100);
for (int i = 0; i < laserCloudNum; i++)
{
laserCloudCornerArray[i].reset(new pcl::PointCloud());
laserCloudSurfArray[i].reset(new pcl::PointCloud());
}
std::thread mapping_process{process};//主执行程序
ros::spin();//不断执行回调函数
return 0;
}
参考:
ALOAM试跑及程序注释_Eminbogen的博客-CSDN博客_a-loam
A-LOAM学习笔记(四)_再路上1216的博客-CSDN博客
六.激光SLAM框架学习之A-LOAM框架---项目工程代码介绍---4.laserMapping.cpp--后端建图和帧位姿精估计(优化)_goldqiu的博客-CSDN博客
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)