up主 刘二大人
视频链接 刘二大人的个人空间_哔哩哔哩_Bilibili
该算法中,损失值为
梯度更新公式为 , 计算的是所有样本的损失和
梯度下降有一个问题: 若遇到鞍点时, 则梯度无法更新
2. 随机梯度下降算法为了解决上述问题, 采取随机梯度下降算法
随机梯度下降算法中, 梯度更新公式为 , 计算的是某一个随机样本的损失
由于单个样本带噪音, 所以在遇到鞍点时,梯度可以继续更新
随机梯度下降算法也有一个问题:计算下一个梯度时,依赖上一次计算的梯度值
这就导致梯度无法并行计算。
3. 总结梯度下降算法 | 随机梯度下降算法 | |
性能 | 低 | 高 |
时间复杂度 | 低 | 高 |
为了折中算法的性能和时间复杂度, 现在大多数说的随机梯度下降算法指的是Mini-Batch 即小批量随机梯度下降算法。
梯度下降算法
# GD
import matplotlib.pyplot as plt
# prepare the training set
x_data = [1.0, 2.0, 3.0]
y_data = [2.0, 4.0, 6.0]
# initial guess of weight
w = 1.0
# define the model linear model y = w*x
def forward(x):
return x * w
def cost(xs, ys):
cost = 0
for x, y in zip(xs, ys):
y_pred = forward(x)
cost += (y_pred - y) ** 2
return cost / len(xs)
# define the gradient function gd
def gradient(xs, ys):
grad = 0
for x, y in zip(xs, ys):
grad += 2 * x * (x * w -y )
return grad / len(xs)
print('predict (before training)', 4, forward(4))
epoch_list = []
cost_list = []
for epoch in range(100):
cost_val = cost(x_data, y_data)
grad_val = gradient(x_data, y_data)
w -= 0.01 * grad_val
epoch_list.append(epoch)
cost_list.append(cost_val)
print("Epoch:", epoch, "w=", w, "loss=", cost_val)
print('Predict (after training)', 4, forward(4))
plt.plot(epoch_list, cost_list)
plt.xlabel('epoch')
plt.ylabel('Loss')
plt.show()
结果显示
随机梯度下降算法
# SGD
import matplotlib.pyplot as plt
# prepare the training set
x_data = [1.0, 2.0, 3.0]
y_data = [2.0, 4.0, 6.0]
# initial guess of weight
w = 1.0
# define the model linear model y = w*x
def forward(x):
return x * w
def loss(x, y):
y_pred = forward(x)
return (y_pred - y) ** 2
# define the gradient function sgd
def gradient(x, y):
return 2 * x * (x * w - y)
print('predict (before training)', 4, forward(4))
epoch_list = []
loss_list = []
for epoch in range(100):
for x, y in zip(x_data, y_data):
grad = gradient(x, y)
w = w - 0.01 * grad
print('\tgrad:', x, y, grad)
l = loss(x, y)
epoch_list.append(epoch)
loss_list.append(l)
print("progress:", epoch, "w=", w, "loss=", l)
print('Predict (after training)', 4, forward(4))
plt.plot(epoch_list, loss_list)
plt.xlabel('epoch')
plt.ylabel('Loss')
plt.show()
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)