function h = hlagr2(L,x)
% HLAGR2
% MATLAB m-file for fractional delay approximation
%拉格朗日插值法的实现函数
% by LAGRANGE INTERPOLATION method
% h = hlagr2(L,x) returns a length L (real) FIR
% filter which approximates the fractional delay
% of x samples.
% Input: L = filter length (filter order N = L-1)
%x = fractional delay (0 <x <= 1)
% Output: Filter coefficient vector h(1)...h(L)
% Subroutines: standard MATLAB functions
N = L-1 % filter order
M = N/2 % middle value
if (M-round(M))==0 D=x+M % integer part closest to middle
else D=x+M-0.5end
%
h=ones(1,(N+1))
%
for n=0:N
n1=n+1
for k=0:N
if (k~=n)
h(n1) = h(n1)*(D-k)/(n-k)
end % if
end% for k
end% for n
这个是用于分数延迟滤波器中拉格朗日插值法的,你可以试试看。或者仿照一下。
去年学的Fortran语言,许多算法都忘了。给你一个去年写的牛顿插值程序,需要改动的地方自己改,貌似循环计算(多层计算)那块处理得不错。real*8 x(0:5),y(0:5),c(0:5),u1,u2,ci
data y/0.796,0.773,0.744,0.704,0.656,0.602/
open(1,file='7-2.dat')
write(*,*)'input u1=?,u2=?'
read(*,*)u1,u2
do i=0,5
x(i)=(i+1)*0.125
enddo
c(0)=y(0)
do i=1,5
call chashang(x,5,i,ci)
c(i)=ci
write(*,*)'c(i)=,i=',c(i),i
write(1,*)'c(i)=,i=',c(i),i
enddo
call newchazhi(u1,c,x,5)
call newchazhi(u2,c,x,5)
end
subroutine newchazhi(u,c,x,m)
real*8 c(0:m),x(0:m),u,N
S=c(0)
do i=1,5
N=c(i)
do j=0,i-1
N=N*(u-x(j))
enddo
S=S+N
enddo
write(*,*)u,s
write(1,*)u,s
end
subroutine chashang(x,m,i,ci)
real*8 y(0:5),x(0:m),f(1:i),ci
y(0)=0.796
y(1)=0.773
y(2)=0.744
y(3)=0.704
y(4)=0.656
y(5)=0.602
k=0
10 do j=1,i-k
f(j)=(y(j)-y(j-1))/(x(j+k)-x(j-1))
enddo
if(j==1) then
goto 5
else
do j=1,i-k
y(j-1)=f(j)
enddo
k=k+1
goto 10
endif
5 ci=f(j)
return
end
x=[1,2,3,4,5]y=[1.2,2.5,4.8,10,15]
a=polyfit(x,y,length(x)-1)%插值
poly2sym(a)%输出插值多项式
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)