美国Michigan 大学的 Holland 教授提出的遗传算法(GeneticAlgorithm, GA)是求解复杂的组合优化问题的有效方法 ,其思想来自于达尔文进化论和门德尔松遗传学说 ,它模拟生物进化过程来从庞大的搜索空间渗旁中筛选出较优秀的解,是一种高效而且具有强鲁棒性方法。所以,遗传算法在求解TSP和 MTSP问题中得到了广泛的应用。
matlab程序如下:
function[opt_rte,opt_brk,min_dist] =mtspf_ga(xy,dmat,salesmen,min_tour,pop_size,num_iter)
%%
%实例
% n = 20%城市个数
% xy = 10*rand(n,2)%城市坐标 随机产生,也可以自己设定
% salesmen = 5%旅行商个数
% min_tour = 3%每个旅行商最少访问的城市数
% pop_size = 80%种群个数
% num_iter = 200%迭代次数
% a = meshgrid(1:n)
% dmat =reshape(sqrt(sum((xy(a,:)-xy(a',:)).^2,2)),n,n)
% [opt_rte,opt_brk,min_dist] = mtspf_ga(xy,dmat,salesmen,min_tour,...
% pop_size,num_iter)%函数
%%
[N,dims]= size(xy)%城市矩阵大小
[nr,nc]= size(dmat)%城市距离矩阵大小
n = N -1% 除去起始的城市后剩余的城市的数
% 初始化路线、断点的选择
num_brks= salesmen-1
dof = n- min_tour*salesmen %初丛仔橡始化路线、断点的选择
addto =ones(1,dof+1)
for k =2:num_brks
addto = cumsum(addto)
end
cum_prob= cumsum(addto)/sum(addto)
%% 初始化种群
pop_rte= zeros(pop_size,n) % 种群路径
pop_brk= zeros(pop_size,num_brks) % 断点集合的种群
for k =1:pop_size
pop_rte(k,:) = randperm(n)+1
pop_brk(k,:) = randbreaks()
end
% 画图路径曲线颜色
clr =[1 0 00 0 10.67 0 10 1 01 0.5 0]
ifsalesmen >戚镇 5
clr = hsv(salesmen)
end
%%
% 基于遗传算法的MTSP
global_min= Inf %初始化最短路径
total_dist= zeros(1,pop_size)
dist_history= zeros(1,num_iter)
tmp_pop_rte= zeros(8,n)%当前的路径设置
tmp_pop_brk= zeros(8,num_brks)%当前的断点设置
new_pop_rte= zeros(pop_size,n)%更新的路径设置
new_pop_brk= zeros(pop_size,num_brks)%更新的断点设置
foriter = 1:num_iter
% 计算适应值
for p = 1:pop_size
d = 0
p_rte = pop_rte(p,:)
p_brk = pop_brk(p,:)
rng = [[1 p_brk+1][p_brk n]]'
for s = 1:salesmen
d = d + dmat(1,p_rte(rng(s,1)))% 添加开始的路径
for k = rng(s,1):rng(s,2)-1
d = d + dmat(p_rte(k),p_rte(k+1))
end
d = d + dmat(p_rte(rng(s,2)),1)% 添加结束的的路径
end
total_dist(p) = d
end
% 找到种群中最优路径
[min_dist,index] = min(total_dist)
dist_history(iter) = min_dist
if min_dist <global_min
global_min = min_dist
opt_rte = pop_rte(index,:)%最优的最短路径
opt_brk = pop_brk(index,:)%最优的断点设置
rng = [[1 opt_brk+1][opt_brk n]]'%设置记录断点的方法
figure(1)
for s = 1:salesmen
rte = [1 opt_rte(rng(s,1):rng(s,2))1]
plot(xy(rte,1),xy(rte,2),'.-','Color',clr(s,:))
title(sprintf('城市数目为 = %d,旅行商数目为 = %d,总路程 = %1.4f, 迭代次数 =%d',n+1,salesmen,min_dist,iter))
hold on
grid on
end
plot(xy(1,1),xy(1,2),'ko')
hold off
end
% 遗传 *** 作
rand_grouping = randperm(pop_size)
for p = 8:8:pop_size
rtes = pop_rte(rand_grouping(p-7:p),:)
brks = pop_brk(rand_grouping(p-7:p),:)
dists =total_dist(rand_grouping(p-7:p))
[ignore,idx] = min(dists)
best_of_8_rte = rtes(idx,:)
best_of_8_brk = brks(idx,:)
rte_ins_pts = sort(ceil(n*rand(1,2)))
I = rte_ins_pts(1)
J = rte_ins_pts(2)
for k = 1:8 %产生新种群
tmp_pop_rte(k,:) = best_of_8_rte
tmp_pop_brk(k,:) = best_of_8_brk
switch k
case 2% 倒置 *** 作
tmp_pop_rte(k,I:J) =fliplr(tmp_pop_rte(k,I:J))
case 3 % 互换 *** 作
tmp_pop_rte(k,[I J]) =tmp_pop_rte(k,[J I])
case 4 % 滑动平移 *** 作
tmp_pop_rte(k,I:J) =tmp_pop_rte(k,[I+1:J I])
case 5% 更新断点
tmp_pop_brk(k,:) = randbreaks()
case 6 % 倒置并更新断点
tmp_pop_rte(k,I:J) =fliplr(tmp_pop_rte(k,I:J))
tmp_pop_brk(k,:) =randbreaks()
case 7 % 互换并更新断点
tmp_pop_rte(k,[I J]) =tmp_pop_rte(k,[J I])
tmp_pop_brk(k,:) =randbreaks()
case 8 % 评议并更新断点
tmp_pop_rte(k,I:J) =tmp_pop_rte(k,[I+1:J I])
tmp_pop_brk(k,:) =randbreaks()
otherwise
end
end
new_pop_rte(p-7:p,:) = tmp_pop_rte
new_pop_brk(p-7:p,:) = tmp_pop_brk
end
pop_rte = new_pop_rte
pop_brk = new_pop_brk
end
figure(2)
plot(dist_history,'b','LineWidth',2)
title('历史最优解')
xlabel('迭代次数')
ylabel('最优路程')
% 随机产生一套断点 的集合
function breaks = randbreaks()
if min_tour == 1 % 一个旅行商时,没有断点的设置
tmp_brks = randperm(n-1)
breaks =sort(tmp_brks(1:num_brks))
else % 强制断点至少找到最短的履行长度
num_adjust = find(rand <cum_prob,1)-1
spaces =ceil(num_brks*rand(1,num_adjust))
adjust = zeros(1,num_brks)
for kk = 1:num_brks
adjust(kk) = sum(spaces == kk)
end
breaks = min_tour*(1:num_brks) +cumsum(adjust)
end
end
disp('最优路径为:/n')
disp(opt_rte)
disp('其中断点为为:/n')
disp(opt_brk)
end
MATLAB实用源代码1图像的读取及旋转
A=imread('')%读取图像
subplot(2,2,1),imshow(A),title('原始图像')%输出图像
I=rgb2gray(A)
subplot(2,2,2),imshow(A),title('灰度图像')
subplot(2,2,3),imhist(I),title('灰度图像直方图')%输出原图直方图
theta = 30J = imrotate(I,theta)% Try varying the angle, theta.
subplot(2,2,4), imshow(J),title(‘旋转图像’)
2边缘检测
I=imread('C:\Users\HP\Desktop\平时总结\路飞.jpg')
subplot(2,2,1),imshow(I),title('原始图像')
I1=edge(I,'sobel')
subplot(2,2,2),imshow(I1),title('sobel边缘检测')
I2=edge(I,'prewitt')
subplot(2,2,3),imshow(I2),title('prewitt边缘检测')
I3=edge(I,'log')
subplot(2,2,4),imshow(I3),title('log边缘检测')
3图像反转
MATLAB 程序实现如下:
I=imread('xian.bmp')
J=double(I)
J=-J+(256-1)%图像反转线性变换
H=uint8(J)
subplot(1,2,1),imshow(I)
subplot(1,2,2),imshow(H)
4.灰度线性变换
MATLAB 程序实现如下:
I=imread('xian.bmp')
subplot(2,2,1),imshow(I)
title('原始昌迅戚谈图像')
axis([50,250,50,200])
axis on%显示坐标系
I1=rgb2gray(I)
subplot(2,2,2),imshow(I1)
title('灰度图像')
axis([50,250,50,200])
axis on %显示坐标系
J=imadjust(I1,[0.1 0.5],[])%局部拉伸,把[0.1 0.5]内的灰度拉伸为[0 1]
subplot(2,2,3),imshow(J)
title('线性变换图像[0.1 0.5]')
axis([50,250,50,200])
grid on %显示网格线
axis on %显示坐标系
K=imadjust(I1,[0.3 0.7],[])%局部拉伸,把[0.3 0.7]内的灰度拉伸为[0 1]
subplot(2,2,4),imshow(K)
title('线性变换图像[0.3 0.7]')
axis([50,250,50,200])
grid on %显示网格线
axis on %显示坐标耐仔此系
5.非线性变换
MATLAB 程序实现如下:
I=imread('xian.bmp')
I1=rgb2gray(I)
subplot(1,2,1),imshow(I1)
title(' 灰度图像')
axis([50,250,50,200])
grid on%显示网格线
axis on%显示坐标系
J=double(I1)
J=40*(log(J+1))
H=uint8(J)
subplot(1,2,2),imshow(H)
title(' 对数变换图像')
axis([50,250,50,200])
grid on %显示网格线
axis on %显示坐标系
4.直方图均衡化
MATLAB 程序实现如下:
I=imread('xian.bmp')
I=rgb2gray(I)
figure
subplot(2,2,1)
imshow(I)
subplot(2,2,2)
imhist(I)
I1=histeq(I)
figure
subplot(2,2,1)
imshow(I1)
subplot(2,2,2)
imhist(I1)
5. 线性平滑滤波器
用MATLAB实现领域平均法抑制噪声程序:
I=imread('xian.bmp')
subplot(231)
imshow(I)
title('原始图像')
I=rgb2gray(I)
I1=imnoise(I,'salt &pepper',0.02)
subplot(232)
imshow(I1)
title(' 添加椒盐噪声的图像')
k1=filter2(fspecial('average',3),I1)/255 %进行3*3模板平滑滤波
k2=filter2(fspecial('average',5),I1)/255 %进行5*5模板平滑滤波k3=filter2(fspecial('average',7),I1)/255 %进行7*7模板平滑滤波
k4=filter2(fspecial('average',9),I1)/255 %进行9*9模板平滑滤波
subplot(233),imshow(k1)title('3*3 模板平滑滤波')
subplot(234),imshow(k2)title('5*5 模板平滑滤波')
subplot(235),imshow(k3)title('7*7 模板平滑滤波')
subplot(236),imshow(k4)title('9*9 模板平滑滤波')
6.中值滤波器
用MATLAB实现中值滤波程序如下:
I=imread('xian.bmp')
I=rgb2gray(I)
J=imnoise(I,'salt&pepper',0.02)
subplot(231),imshow(I)title('原图像')
subplot(232),imshow(J)title('添加椒盐噪声图像')
k1=medfilt2(J) %进行3*3模板中值滤波
k2=medfilt2(J,[5,5]) %进行5*5模板中值滤波
k3=medfilt2(J,[7,7]) %进行7*7模板中值滤波
k4=medfilt2(J,[9,9]) %进行9*9模板中值滤波
subplot(233),imshow(k1)title('3*3模板中值滤波')
subplot(234),imshow(k2)title('5*5模板中值滤波 ')
subplot(235),imshow(k3)title('7*7模板中值滤波')
subplot(236),imshow(k4)title('9*9 模板中值滤波')
7.用Sobel算子和拉普拉斯对图像锐化:
I=imread('xian.bmp')
subplot(2,2,1),imshow(I)
title('原始图像')
axis([50,250,50,200])
grid on%显示网格线
axis on%显示坐标系
I1=im2bw(I)
subplot(2,2,2),imshow(I1)
title('二值图像')
axis([50,250,50,200])
grid on%显示网格线
axis on%显示坐标系
H=fspecial('sobel')%选择sobel算子
J=filter2(H,I1) %卷积运算
subplot(2,2,3),imshow(J)
title('sobel算子锐化图像')
axis([50,250,50,200])
grid on%显示网格线
axis on%显示坐标系
h=[0 1 0,1 -4 1,0 1 0] %拉普拉斯算子
J1=conv2(I1,h,'same')%卷积运算
subplot(2,2,4),imshow(J1)
title('拉普拉斯算子锐化图像')
axis([50,250,50,200])
grid on %显示网格线
axis on %显示坐标系
8.梯度算子检测边缘
用 MATLAB实现如下:
I=imread('xian.bmp')
subplot(2,3,1)
imshow(I)
title('原始图像')
axis([50,250,50,200])
grid on %显示网格线
axis on %显示坐标系
I1=im2bw(I)
subplot(2,3,2)
imshow(I1)
title('二值图像')
axis([50,250,50,200])
grid on %显示网格线
axis on %显示坐标系
I2=edge(I1,'roberts')
figure
subplot(2,3,3)
imshow(I2)
title('roberts算子分割结果')
axis([50,250,50,200])
grid on %显示网格线
axis on %显示坐标系
I3=edge(I1,'sobel')
subplot(2,3,4)
imshow(I3)
title('sobel算子分割结果')
axis([50,250,50,200])
grid on %显示网格线
axis on %显示坐标系
I4=edge(I1,'Prewitt')
subplot(2,3,5)
imshow(I4)
title('Prewitt算子分割结果 ')
axis([50,250,50,200])
grid on %显示网格线
axis on %显示坐标系
9.LOG算子检测边缘
用 MATLAB程序实现如下:
I=imread('xian.bmp')
subplot(2,2,1)
imshow(I)
title('原始图像')
I1=rgb2gray(I)
subplot(2,2,2)
imshow(I1)
title('灰度图像')
I2=edge(I1,'log')
subplot(2,2,3)
imshow(I2)
title('log算子分割结果')
10.Canny算子检测边 缘
用MATLAB程序实现如下:
I=imread('xian.bmp')
subplot(2,2,1)
imshow(I)
title('原始图像')
I1=rgb2gray(I)
subplot(2,2,2)
imshow(I1)
title('灰度图像')
I2=edge(I1,'canny')
subplot(2,2,3)
imshow(I2)
title('canny算子分割结果')
11.边界跟踪 (bwtraceboundary函数)
clc
clear all
I=imread('xian.bmp')
figure
imshow(I)
title('原始图像')
I1=rgb2gray(I) %将彩色图像转化灰度图像
threshold=graythresh(I1) %计算将灰度图像转化为二值图像所需的门限
BW=im2bw(I1, threshold) %将灰度图像转化为二值图像
figure
imshow(BW)
title('二值图像')
dim=size(BW)
col=round(dim(2)/2)-90%计算起始点列坐标
row=find(BW(:,col),1) %计算起始点行坐标
connectivity=8
num_points=180
contour=bwtraceboundary(BW,[row,col],'N',connectivity,num_points)
%提取边界
figure
imshow(I1)
hold on
plot(contour(:,2),contour(:,1), 'g','LineWidth' ,2)
title('边界跟踪图像')
12.Hough变换
I= imread('xian.bmp')
rotI=rgb2gray(I)
subplot(2,2,1)
imshow(rotI)
title('灰度图像')
axis([50,250,50,200])
grid on
axis on
BW=edge(rotI,'prewitt')
subplot(2,2,2)
imshow(BW)
title('prewitt算子边缘检测 后图像')
axis([50,250,50,200])
grid on
axis on
[H,T,R]=hough(BW)
subplot(2,2,3)
imshow(H,[],'XData',T,'YData',R,'InitialMagnification','fit')
title('霍夫变换图')
xlabel('\theta'),ylabel('\rho')
axis on , axis normal, hold on
P=houghpeaks(H,5,'threshold',ceil(0.3*max(H(:))))
x=T(P(:,2))y=R(P(:,1))
plot(x,y,'s','color','white')
lines=houghlines(BW,T,R,P,'FillGap',5,'MinLength',7)
subplot(2,2,4),imshow(rotI)
title('霍夫变换图像检测')
axis([50,250,50,200])
grid on
axis on
hold on
max_len=0
for k=1:length(lines)
xy=[lines(k).point1lines(k).point2]
plot(xy(:,1),xy(:,2),'LineWidth',2,'Color','green')
plot(xy(1,1),xy(1,2),'x','LineWidth',2,'Color','yellow')
plot(xy(2,1),xy(2,2),'x','LineWidth',2,'Color','red')
len=norm(lines(k).point1-lines(k).point2)
if(len>max_len)
max_len=len
xy_long=xy
end
end
plot(xy_long(:,1),xy_long(:,2),'LineWidth',2,'Color','cyan')
13.直方图阈值法
用 MATLAB实现直方图阈值法:
I=imread('xian.bmp')
I1=rgb2gray(I)
figure
subplot(2,2,1)
imshow(I1)
title(' 灰度图像')
axis([50,250,50,200])
grid on%显示网格线
axis on%显示坐标系
[m,n]=size(I1)%测量图像尺寸参数
GP=zeros(1,256)%预创建存放灰度出现概率的向量
for k=0:255
GP(k+1)=length(find(I1==k))/(m*n)%计算每级灰度出现的概率,将其存入GP中相应位置
end
subplot(2,2,2),bar(0:255,GP,'g')%绘制直方图
title('灰度直方图')
xlabel('灰度值')
ylabel(' 出现概率')
I2=im2bw(I,150/255)
subplot(2,2,3),imshow(I2)
title('阈值150的分割图像')
axis([50,250,50,200])
grid on %显示网格线
axis on %显示坐标系
I3=im2bw(I,200/255) %
subplot(2,2,4),imshow(I3)
title('阈值200的分割图像')
axis([50,250,50,200])
grid on %显示网格线
axis on %显示坐标系
14. 自动阈值法:Otsu法
用MATLAB实现Otsu算法:
clc
clear all
I=imread('xian.bmp')
subplot(1,2,1),imshow(I)
title('原始图像')
axis([50,250,50,200])
grid on %显示网格线
axis on %显示坐标系
level=graythresh(I)%确定灰度阈值
BW=im2bw(I,level)
subplot(1,2,2),imshow(BW)
title('Otsu 法阈值分割图像')
axis([50,250,50,200])
grid on %显示网格线
axis on %显示坐标系
15.膨胀 *** 作
I=imread('xian.bmp') %载入图像
I1=rgb2gray(I)
subplot(1,2,1)
imshow(I1)
title('灰度图像')
axis([50,250,50,200])
grid on %显示网格线
axis on %显示坐标系
se=strel('disk',1) %生成圆形结构元素
I2=imdilate(I1,se)%用生成的结构元素对图像进行膨胀
subplot(1,2,2)
imshow(I2)
title(' 膨胀后图像')
axis([50,250,50,200])
grid on %显示网格线
axis on %显示坐标系
16.腐蚀 *** 作
MATLAB 实现腐蚀 *** 作
I=imread('xian.bmp') %载入图像
I1=rgb2gray(I)
subplot(1,2,1)
imshow(I1)
title('灰度图像')
axis([50,250,50,200])
grid on %显示网格线
axis on %显示坐标系
se=strel('disk',1) %生成圆形结构元素
I2=imerode(I1,se) %用生成的结构元素对图像进行腐蚀
subplot(1,2,2)
imshow(I2)
title('腐蚀后图像')
axis([50,250,50,200])
grid on %显示网格线
axis on %显示坐标系
17.开启和闭合 *** 作
用 MATLAB实现开启和闭合 *** 作
I=imread('xian.bmp') %载入图像
subplot(2,2,1),imshow(I)
title('原始图像')
axis([50,250,50,200])
axis on %显示坐标系
I1=rgb2gray(I)
subplot(2,2,2),imshow(I1)
title('灰度图像')
axis([50,250,50,200])
axis on %显示坐标系
se=strel('disk',1)%采用半径为1的圆作为结构元素
I2=imopen(I1,se)%开启 *** 作
I3=imclose(I1,se) %闭合 *** 作
subplot(2,2,3),imshow(I2)
title('开启运算后图像')
axis([50,250,50,200])
axis on %显示坐标系
subplot(2,2,4),imshow(I3)
title('闭合运算后图像')
axis([50,250,50,200])
axis on %显示坐标系
18.开启和闭合组合 *** 作
I=imread('xian.bmp')%载入图像
subplot(3,2,1),imshow(I)
title('原始图像')
axis([50,250,50,200])
axis on%显示坐标系
I1=rgb2gray(I)
subplot(3,2,2),imshow(I1)
title('灰度图像')
axis([50,250,50,200])
axis on%显示坐标系
se=strel('disk',1)
I2=imopen(I1,se)%开启 *** 作
I3=imclose(I1,se)%闭合 *** 作
subplot(3,2,3),imshow(I2)
title('开启运算后图像')
axis([50,250,50,200])
axis on%显示坐标系
subplot(3,2,4),imshow(I3)
title('闭合运算后图像')
axis([50,250,50,200])
axis on%显示坐标系
se=strel('disk',1)
I4=imopen(I1,se)
I5=imclose(I4,se)
subplot(3,2,5),imshow(I5)%开—闭运算图像
title('开—闭运算图像')
axis([50,250,50,200])
axis on%显示坐标系
I6=imclose(I1,se)
I7=imopen(I6,se)
subplot(3,2,6),imshow(I7)%闭—开运算图像
title('闭—开运算图像')
axis([50,250,50,200])
axis on%显示坐标系
19.形态学边界提取
利用 MATLAB实现如下:
I=imread('xian.bmp')%载入图像
subplot(1,3,1),imshow(I)
title('原始图像')
axis([50,250,50,200])
grid on%显示网格线
axis on%显示坐标系
I1=im2bw(I)
subplot(1,3,2),imshow(I1)
title('二值化图像')
axis([50,250,50,200])
grid on%显示网格线
axis on%显示坐标系
I2=bwperim(I1)%获取区域的周长
subplot(1,3,3),imshow(I2)
title('边界周长的二值图像')
axis([50,250,50,200])
grid on
axis on
20.形态学骨架提取
利用MATLAB实现如下:
I=imread('xian.bmp')
subplot(2,2,1),imshow(I)
title('原始图像')
axis([50,250,50,200])
axis on
I1=im2bw(I)
subplot(2,2,2),imshow(I1)
title('二值图像')
axis([50,250,50,200])
axis on
I2=bwmorph(I1,'skel',1)
subplot(2,2,3),imshow(I2)
title('1次骨架提取')
axis([50,250,50,200])
axis on
I3=bwmorph(I1,'skel',2)
subplot(2,2,4),imshow(I3)
title('2次骨架提取')
axis([50,250,50,200])
axis on
21.直接提取四个顶点坐标
I = imread('xian.bmp')
I = I(:,:,1)
BW=im2bw(I)
figure
imshow(~BW)
[x,y]=getpts
平滑滤波
h=fspecial('average',9)
I_gray=imfilter(I_gray,h,'replicate')%平滑滤波
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)