莱布尼兹公式为微积分基本定理,揭示了定积分与被积函数的原函数或者不定积分之间的联系。
牛顿-莱布尼茨公式的内容是一个连续函数在区间 [ a,b ] 上的定积分等于它的任意一个原函数在区间[ a,b ]上的增量。
牛顿在1666年写的《流数简论》中利用运动学描述了这一公式,1677年,莱布尼茨在一篇手稿中正式提出了这一公式。因为二者最早发现了这一公式,于是命名为牛顿-莱布尼茨公式。
莱布尼兹公式的意义
牛顿-莱布尼茨公式的发现,使人们找到了解决曲线的长度,曲线围成的面积和曲面围成的体积这些问题的一般方法。它简化了定积分的计算,只要知道被积函数的原函数,总可以求出定积分的精确值或一定精度的近似值。
牛顿-莱布尼茨公式是联系微分学与积分学的桥梁,它是微积分中最基本的公式之一。它证明了微分与积分是可逆运算,同时在理论上标志着微积分完整体系的形成,从此微积分成为一门真正的学科。
网页链接,
括号里面的n是指它的几阶导数,上面加几个撇也是几阶导数的意思。整个式子类似于高中学的二项式定理展开式。u=e的x次方,v=cosx, e的x次方几次方都是e的x次方,cosx一阶导数是
-sinx,二阶导数-cosx,三阶导数sinx,四阶导数cosx,五阶导数-sinx,❗是阶乘的意思,后面的式子中的k依次带入3,4,5,当k=5就是最后一项,带入就可以了,如果还是不懂,建议找一下课本上的例题或者网上找一个相应的习题,比着葫芦画瓢,整体不难,手打不易,希望采纳谢谢。
若函数f(x)在[a,b]上连续,且存在原函数F(x),则f(x)在[a,b]上可积,且∫(a→b)f(x)dx=F(b)-F(a),则可以用牛顿莱布尼兹公式。
牛顿-莱布尼茨公式(Newton-Leibniz formula),通常也被称为微积分基本定理,揭示了定积分与被积函数的原函数或者不定积分之间的联系。 牛顿-莱布尼茨公式的内容是一个连续函数在区间 [ a,b ] 上的定积分等于它的任意一个原函数在区间[ a,b ]上的增量。
扩展资料:
根据牛顿-莱布尼茨公式,许多函数的定积分的计算就可以简便地通过求不定积分来进行。这里要注意不定积分与定积分之间的关系:定积分是一个数,而不定积分是一个表达式,它们仅仅是数学上有一个计算关系。
一个函数,可以存在不定积分,而不存在定积分,也可以存在定积分,而没有不定积分。连续函数,一定存在定积分和不定积分;若在有限区间[a,b]上只有有限个间断点且函数有界,则定积分存在;若有跳跃、可去、无穷间断点,则原函数一定不存在,即不定积分一定不存在。
是定积分那个吗很简单啊,就是求出被积函数然后把上下限代进去求结果
积分原来就是求面积用的
所以那个累加公式就是把一个不规则图形无限分割成小矩形或梯形或扇形等等可以求出面积的形状,然后叠加起来,用一个近似值表达积分。
而当无限细分时,近似值的极限就是积分准确值,这样就把积分问题转化成了极限问题。
实在理解不了也不必强求,记住公式就好了
把定积分转化成西格玛求和那是最基本的定义,基本不会考
一句话,定积分是求面积,曲线积分是求功,曲面积分是求流量莱布尼兹(Leibniz)公式:
(uv)
(n)
k(nk)(k)
Cnuvk0
n
u(n)vnu(n1)v
n(n1)(n2)n(n1)(nk1)(nk)(k)
uvuvuv(n)
2!k!
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)