=xarctanx - ∫ x/(1+x^2) dx
=xarctanx - (1/2)∫ d(1+x^2)/(1+x^2)
=xarctanx - (1/2)ln|1+x^2| +C
arctanx的原函数 =xarctanx - (1/2)ln|1+x^2| +C
解题过程如下:
∫arctanxdx
=xarctanx-∫xdarctanx
=xarctanx-∫x/(1+x²)dx
=xarctanx-1/2ln(1+x²)+C
扩展资料积分公式主要有如下几类:
含ax+b的积分、含√(a+bx)的积分、含有x^2±α^2的积分、含有ax^2+b(a>0)的积分、含有√(a2+x^2) (a>0)的积分、含有√(a^2-x^2) (a>0)的积分。
含有√(|a|x^2+bx+c) (a≠0)的积分、含有三角函数的积分、含有反三角函数的积分、含有指数函数的积分、含有对数函数的积分、含有双曲函数的积分。
求函数积分的方法:
函数的积分表示了函数在某个区域上的整体性质,改变函数某点的取值不会改变它的积分值。对于黎曼可积的函数,改变有限个点的取值,其积分不变。
对于勒贝格可积的函数,某个测度为0的集合上的函数值改变,不会影响它的积分值。如果两个函数几乎处处相同,那么它们的积分相同。如果对 中任意元素A,可积函数f在A上的积分总等于(大于等于)可积函数g在A上的积分,那么f几乎处处等于(大于等于)g。
如果在闭区间[a,b]上,无论怎样进行取样分割,只要它的子区间长度最大值足够小,函数f的黎曼和都会趋向于一个确定的值S,那么f在闭区间[a,b]上的黎曼积分存在,并且定义为黎曼和的极限S。
arctan(即Arctangent)指反正切函数。反函数与原函数关于y=x的对称点的导数互为倒数。设原函数为y=f(x),则其反函数在y点的导数与f'(x)互为倒数(即原函数,前提要f'(x)存在且不为0)。arctanx求导方法:
令y=arctanx,则x=tany。
对x=tany这个方程“=”的两边同时对x求导,则
(x)'=(tany)'
1=sec2y(y)',则
(y)'=1/sec2y
又tany=x,则sec2y=1+tan2y=1+x2
得,(y)'=1/(1+x2)
即arctanx的导数为1/(1+x2)。arctanx不等于1/cotx,tanx=1/cotx,
arctanx应该是不可以理解为tan1/x的,
arcsinx和arccosx是同一原理
楼主只要记住,“arc”这种形式是反三角函数的形式,旨在表示某一三角函数值不特殊的角就OK了~
结果为:xarctanx - (1/2)ln(1+x²) + C
解题过程如下:
∫arctanxdx
= xarctanx - ∫x d(arctanx)
= xarctanx - ∫ x/(1+x²)dx
= xarctanx - (1/2)∫1/(1+x²) d(1+x²)
= xarctanx - (1/2)ln(1+x²) + C
扩展资料求函数积分的方法:
设F(x)是函数f(x)的一个原函数,我们把函数f(x)的所有原函数F(x)+C(C为任意常数)叫做函数f(x)的不定积分,记作,即∫f(x)dx=F(x)+C。
其中∫叫做积分号,f(x)叫做被积函数,x叫做积分变量,f(x)dx叫做被积式,C叫做积分常数,求已知函数不定积分的过程叫做对这个函数进行积分。
积分是微积分学与数学分析里的一个核心概念。通常分为定积分和不定积分两种。直观地说,对于一个给定的实函数f(x),在区间[a,b]上的定积分。
若f(x)在[a,b]上恒为正,可以将定积分理解为在Oxy坐标平面上,由曲线(x,f(x))、直线x=a、x=b以及x轴围成的面积值(一种确定的实数值)。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)