黄金螺旋螺旋线是什么原理?

黄金螺旋螺旋线是什么原理?,第1张

斐波那契螺旋线,也称“黄金螺旋”,是根据斐波那契数列画出来的螺旋。这种形状在自然界中无处不在。该原理和黄金比例紧密相连,用后一项除以前一项,比例会越来越接近1618:1。

常见于各种摄影构图、设计理念、建筑物当中,自然界中也有很多如贝类的螺旋轮廓线、向日葵轮廓、银河等这种天然的“黄金螺旋”。

作图规则是在以斐波那契数为边的正方形拼成的长方形中画一个90度的扇形,连起来的弧线就是斐波那契螺旋线。它来源于斐波那契数列(FibonacciSequence),又称为黄金分割数列。自然界中存在许多斐波那契螺旋线的图案,是自然界最完美的经典黄金比例。

扩展资料

实际上,在自然界中存在着大量美丽、神奇的天然黄金螺旋结构,这是大自然的精妙设计。图中显示的是银河系的斐波那契螺旋线,同样也完美地符合“黄金螺旋”的形状。

甚至像芦荟这样的多肉植物也会呈现出“黄金螺旋”的形状。植物以“黄金螺旋”的形式生长出新的细胞,然后就会呈现出这种形状。这种方式让植物的新生叶子与旧叶子互相之间不会相互遮挡太多,能最大程度地享用阳 光和雨露。

仙人掌呈现“黄金螺旋”形状的证据似乎并不明显,但是仔细观察仙人掌上长出的针,它们的排列方式居然与向日葵与多肉植物的形状很相似。

参考资料来源:百度百科-斐波那契螺旋线

所谓黄金三角形是一个等腰三角形其腰与底的长度比为黄金比值黄金三角形分两种:一种是等腰三角形,两个底角为72°顶角为36°这种三角形既美观又标准。这样的三角形的底与一腰之长之比为黄金比:(√5-1)/2另一种也是等腰三角形,两个底角为36°顶角为108°这种三角形一腰与底边之长之比为黄金比:(√5-1)/2黄金三角形是一个等腰三角形,它的顶角为36°,每个底角为72°它的腰与它的底成黄金比.当底角被平分时,角平分线分对边也成黄金比,并形成两个较小的等腰三角形.这两三角形之一相似于原三角形,而另一三角形可用于产生螺旋形曲线.黄金三角形的一个几何特征是:它是唯一一种能够由5个与其全等的三角形生成其相似三角形的三角形。顶角36°的黄金三角形按任意一底角的角平分线分成两个小等腰三角形,且其中一个等腰三角形的底角是另一个的2倍。顶角是108°的黄金三角形把顶角一个72°和一个36°的角,这条分线也把黄金三角形分成两个小等腰三角形,且其中一个等腰三角形的底角也是另一个的2倍。`
可以借助工具按照上边的描述画

这个是“斐波那契螺旋线”
斐波那契螺旋线,也称“黄金螺旋”,是根据斐波那契数列画出来的螺旋曲线,自然界中存在许多斐波那契螺旋线的图案。
斐波那契螺旋线,也称“黄金螺旋”,是根据斐波那契数列画出来的螺旋曲线,自然界中存在许多斐波那契螺旋线的图案,是自然界最完美的经典黄金比例。斐波那契螺旋线,以斐波那契数为边的正方形拼成的长方形,然后在正方形里面画一个90度的扇形,连起来的弧线就是斐波那契螺旋线。
斐波那契数列(FibonacciSequence),又称为:黄金分割数列。在数学上,斐波那契数列是以递归的方法来定义:
F0=0
F1=1
Fn=Fn-1+Fn-2


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/yw/13029995.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-05-29
下一篇 2023-05-29

发表评论

登录后才能评论

评论列表(0条)

保存