python中sympy库求常微分方程的用法

python中sympy库求常微分方程的用法,第1张

python中sympy库求常微分方程的用法

问题1:

程序,如下

from sympy import *
f = symbols('f', cls=Function)
x = symbols('x')
eq = Eq(f(x).diff(x, x) - 2*f(x).diff(x) + f(x), sin(x))
print(dsolve(eq, f(x)))

结果

Eq(f(x), (C1 + C2*x)*exp(x) + cos(x)/2)

附:布置考试中两题

1.利用python的Sympy库求解微分方程的解 y=f(x),并尝试利用matplotlib绘制函数图像

程序,如下

from sympy import *
f = symbols('f', cls=Function)
x = symbols('x')
eq = Eq(f(x).diff(x,1)+f(x)+f(x)**2, 0)
print(dsolve(eq, f(x)))
C1 = symbols('C1')
eqr = -C1/(C1 - exp(x))
eqr1 = eqr.subs(x, 0)
print(solveset(eqr1 - 1, C1))
eqr2 = eqr.subs(C1, 1/2)
# 画图
import matplotlib.pyplot as plt
import numpy as np
x_1 = np.arange(-5, 5, 0.1)
y_1 = [-0.5/(0.5 - exp(x)) for x in x_1]
plt.plot(x_1, y_1)
plt.axis([-6,6,-10,10])
plt.grid()
plt.show()

结果

Eq(f(x), -C1/(C1 - exp(x)))
FiniteSet(1/2)


2.利用python的Sympy库求解微分方程的解 y=y(x),并尝试利用matplotlib绘制函数图像

程序,如下

from sympy import *
y = symbols('y', cls=Function)
x = symbols('x')
eq = Eq(y(x).diff(x,1), y(x))
print(dsolve(eq, y(x)))
C1 = symbols('C1')
eqr = C1*exp(x)
eqr1 = eqr.subs(x, 0)
print(solveset(eqr1 - 1, C1))
eqr2 = eqr.subs(C1, 1)
# 画图
import matplotlib.pyplot as plt
import numpy as np
x_1 = np.arange(-5, 5, 0.01)
y_1 = [exp(x) for x in x_1]
plt.plot(x_1, y_1, color='orange')
plt.grid()
plt.show()

结果

Eq(y(x), C1*exp(x))
FiniteSet(1)

到此这篇关于python中sympy库求常微分方程的用法的文章就介绍到这了,更多相关python sympy常微分方程内容请搜索考高分网以前的文章或继续浏览下面的相关文章希望大家以后多多支持考高分网!

欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/zaji/3225686.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2022-10-04
下一篇 2022-10-04

发表评论

登录后才能评论

评论列表(0条)

保存