实轴
两顶点之间的距离称为双曲线的实轴,实轴长的一半称为实半轴。
虚轴
在标准方程中令x=0,得y²=-b²,该方程无实根,为便于作图,在y轴上画出B1(0,b)和B2(0,-b),以B1B2为虚轴.
如上图中:
双曲线是定义为平面交截直角圆锥面的两半的一类圆锥曲线。
高中数学中的双曲线定义::
平面内,到两个定点的距离之差的绝对值为常数(小于这两个定点间的距离)的点的轨迹称为双曲线。
解析式如下:
标准方程为:
1、焦点在X轴上时为:
(a>0,b>0)
2、焦点在Y 轴上时为:
(a>0,b>0)
拓展:
双曲线的重要要素之渐近线
渐近线
双曲线有两条渐近线。渐近线和双曲线不相交。
渐近线的方程求法是:将右边的常数设为0,即可用解二元二次的方法求出渐近线的解,例如:
,将1替换为0,得,则双曲线的渐近线为
一般地我们把直线
叫做双曲线(焦点在X轴上)的渐近线(asymptote to the hyperbola )
焦点在y轴上的双曲线的渐近线为
参考资料:
双曲线 百度百科
双曲线中实轴等于2a,虚轴等于2b。
若为焦点在x轴上的双曲线,在x轴上的两焦点之间的距离长等于2a,也就是是双曲线的实轴,是双曲线两支中相距最近的点,相对应的2b就是虚轴。
实轴长是指到定点的距离差为定长的常数,它的一半就是指所谓的表达式中的a,而虚轴长没有什么实际意义,往往和实轴一起用来讨论渐进线,它的一半就是所谓的表达式中的b。
一般的,双曲线(希腊语“ὑπερβολή”,字面意思是“超过”或“超出”)是定义为平面交截直角圆锥面的两半的一类圆锥曲线。
它还可以定义为与两个固定的点(叫做焦点)的距离差是常数的点的轨迹。这个固定的距离差是a的两倍,这里的a是从双曲线的中心到双曲线最近的分支的顶点的距离。a还叫做双曲线的实半轴。焦点位于贯穿轴上,它们的中间点叫做中心,中心一般位于原点处。
双曲线中实轴是2a,虚轴是2b。若为焦点在x轴上的双曲线,在x轴上的两焦点之间的距离长等于2a,也就是是双曲线的实轴,是双曲线两支中相距最近的点,相对应的2b就是虚轴,实轴长是指到定点的距离差为定长的常数,它的一半就是指所谓的表达式中的a,而虚轴长没有什么实际意义,往往和实轴一起用来讨论渐进线,它的一半就是所谓的表达式中的b。
双曲线的内容
在数学中,双曲线,多重双曲线或双曲线是位于平面中的一种平滑曲线,由其几何特性或其解决方案组合的方程定义,双曲线有两片,称为连接的组件或分支,它们是彼此的镜像,类似于两个无限弓,双曲线是由平面和双锥相交形成的三种圆锥截面之一,其他圆锥部分是抛物线和椭圆,圆是椭圆的特殊情况如果平面与双锥的两半相交,但不通过锥体的顶点,则圆锥曲线是双曲线。
它还可以定义为与两个固定的点,叫做焦点的距离差是常数的点的轨迹,这个固定的距离差是a的两倍,这里的a是从双曲线的中心到双曲线最近的分支的顶点的距离,a还叫做双曲线的实半轴。焦点位于贯穿轴上,它们的中间点叫做中心,中心一般位于原点处。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)