积分计算是什么?

积分计算是什么?,第1张

积分计算,是函数f(x)在区间[a,b]上积分和的极限。

这里应注意定积分不定积分之间的关系:若定积分存在,则它是一个具体的数值,而不定积分是一个函数表达式,它们仅仅在数学上有一个计算关系(牛顿-莱布尼茨公式)。

一个函数,可以存在不定积分,而不存在定积分;也可以存在定积分,而不存在不定积分。一个连续函数,一定存在定积分和不定积分;若只有有限个间断点,则定积分存在;若有跳跃间断点,则原函数一定不存在,即不定积分一定不存在。

黎曼积分

定积分的正式名称是黎曼积分。用黎曼自己的话来说,就是把直角坐标系上的函数的图象用平行于y轴的直线把其分割成无数个矩形,然后把某个区间[a,b]上的矩形累加起来,所得到的就是这个函数的图象在区间[a,b]的面积。实际上,定积分的上下限就是区间的两个端点a,b。

我们可以看到,定积分的本质是把图象无限细分,再累加起来,而积分的本质是求一个导函数的原函数。

积分计算是微分的逆运算。

积分是微分的逆运算,即知道了函数的导函数,反求原函数。在应用上,积分作用不仅如此,它被大量应用于求和,通俗的说是求曲边三角形的面积,这巧妙的求解方法是积分特殊的性质决定的。

主要分为定积分、不定积分以及其他积分。积分的性质主要有线性性、保号性、极大值极小值、绝对连续性、绝对值积分。

积分计算的信息:

积分的运算法则:积分的运算法则,别称积分的性质。积分是线性的。如果一个函数f可积,那么它乘以一个常数后仍然可积。如果函数f和g可积,那么它们的和与差也可积。

积分都满足一些基本的性质。以下的I在黎曼积分意义上表示一个区间,在勒贝格积分意义下表示一个可测集合。积分是线性的。如果一个函数f可积,那么它乘以一个常数后仍然可积。如果函数f和g可积,那么它们的和与差也可积。

积分是微积分学与数学分析里的一个核心概念。通常分为定积分和不定积分两种。直观地说,对于一个给定的实函数f(x),在区间[a,b]上的定积分。

积分计算公式包括含ax+b的积分、含√(a+bx)的积分、含有ax^2+b(a>0)的积分、含有√(a²+x^2)(a>0)的积分、含有√(a^2-x^2)(a>0)的积分、含有三角函数的积分、含有反三角函数的积分、含有指数函数的积分、含有对数函数的积分等。具体公式如下所示。

含ax+b的积分公式

∫1/(a+bx)dx=(1/b)*ln|a+bx|+C、∫x/(a+bx)dx=(1/(b^2))*(a+bx-aln|a+bx|)+C。

含有ax^2+b(a>0)的积分公式

∫1/(ax^2+b)dx=(1/√(ab))*arctan((√a/√b)*x)+C。

含有三角函数的积分公式

∫sinxdx=-cosx+C、∫cosxdx=sinx+C、∫secxtanxdx=secx+C、∫tanxdx=-ln|cosx|+C。

不定积分

设F(x)是函数f(x)的一个原函数,我们把函数f(x)的所有原函数F(x)+C(C为任意常数)叫做函数f(x)的不定积分,记作∫f(x)dx=F(x)+C.其中∫叫做积分号,f(x)叫做被积函数,x叫做积分变量,f(x))dx叫做被积式,C叫做积分常数。

求已知函数不定积分的过程叫做对这个函数进行积分。

以上内容参考:百度百科-积分公式


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/zaji/5811517.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-02-02
下一篇 2023-02-02

发表评论

登录后才能评论

评论列表(0条)

保存