【定义】:
1、关键词线性方程乘积的导数.6A(x)y′+B(x)y=f(x)A(x)y″+B(x)y′+C(x)y=f(x)等等为线性方程当f(x)≡0时称为齐次方程。
2、如果一个一阶微分方程dy/dx=f(x,y)中的函数f(x,y)可写成y/x的函数,即f(x,y)=g(y/x),则这个方程是齐次方程。
【应用】:
“齐次”从词面上解释是“次数相等”的意思。
微分方程中有两个地方用到“齐次”的叫法:
1、形如y'=f(y/x)的方程称为“齐次方程”,这里是指方程中每一项关于x、y的次数都是相等的,例如x^2,xy,y^2都算是二次项,而y/x算0次项,方程y'=1+y/x中每一项都是0次项,所以是“齐次方程”。
2、形如y''+py'+qy=0(其中p和q为常数)的方程称为“齐次线性方程”,这里“齐次”是指方程中每一项关于未知函数y及其导数y',y'',……的次数都是相等的(都是一次),而方程y''+py'+qy=x就不是“齐次”的,因为方程右边的项x不含y及y的导数,是关于y,y',y'',……的0次项,因而就要称为“非齐次线性方程”。
另外在线性代数里也有“齐次”的叫法,例如f=ax²+bxy+cy^2称为二次齐式,即二次齐次式的意思,因为f中每一项都是关于x、y的二次项。
"齐次方程"在工具书中的解释
1、所含各项关于未知数具有相同次数的方程,例如y/x+x/y+a=1等。它们的右端,都是未知数的齐次函数或齐次多项式。右端为零的方程(组)亦称为齐次方程(组),例如线性齐次(代数)方程组、齐次微分方程*等。见齐次微分方程*。
2、所含各项关于未知数具有相同次数的方程。它们的右端,都是未知数的齐次函数或齐次多项式。
"齐次方程"
在学术文献中的解释
1、关键词线性方程乘积的导数中图分类号穿护扁咎壮侥憋鞋铂猫O241.6A(x)y′+B(x)y=f(x)A(x)y″+B(x)y′+C(x)y=f(x)等等为线性方程当f(x)≡0时称为齐次方程
1、齐次方程是数学的一个方程,是指简化后的方程中所有非零项的指数相等,也叫所含各项关于未知数的次数;
2、一阶线性微分方程,定义:形如y'+P(x)y=Q(x)的微分方程称为一阶线性微分方程,Q(x)称为自由项;
3、方程左端是含未知数的项,右端等于零。通常齐次方程是求解问题的过渡形式,化为齐次方程后便于求解。
扩展资料:
如果右边的函数f(x,y)是零次齐次函数,则这种一阶方程称为一阶齐次型方程。k次齐次函数指的是存在一个常数k,使得f(tx,ty)=t^k*f(x,y),如果k=0,f(x,y)是零次齐次函数,即f(tx,ty)=f(x,y),此时f(x,y)=f(x*1,x*y/x)=f(1,y/x),可写成g(y/x)的结构。
如果右边的函数f(x,y)是关于y的线性函数P(x)y+Q(x),则称微分方程y'=P(x)y+Q(x)为一阶线性方程,与y完全无关的项Q(x)=0时为齐次线性方程,Q(x)≠0时为非齐次线性方程。
参考资料来源:百度百科-齐次方程
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)