#include "reg52h"
#define uchar unsigned char
#define uint unsigned int
unsigned char code table[]={0x3f,0x06,0x5b,0x4f,0x66,0x6d,0x7d,0x07,0x7f,0x6f,0x77,0x7c,0x39,0x5e,0x79,0x71,0x00}; //共阴极0~9对应16进制数
//=============正弦波数据====================
uchar code sin_tab[256]=
{
0x80, 0x83, 0x86, 0x89, 0x8c, 0x8f, 0x92, 0x95, 0x98, 0x9c, 0x9f, 0xa2, 0xa5, 0xa8, 0xab, 0xae,
0xb0, 0xb3, 0xb6, 0xb9, 0xbc, 0xbf, 0xc1, 0xc4, 0xc7, 0xc9, 0xcc, 0xce, 0xd1, 0xd3, 0xd5, 0xd8,
0xda, 0xdc, 0xde, 0xe0, 0xe2, 0xe4, 0xe6, 0xe8, 0xea, 0xec, 0xed, 0xef, 0xf0, 0xf2, 0xf3, 0xf4,
0xf6, 0xf7, 0xf8, 0xf9, 0xfa, 0xfb, 0xfc, 0xfc, 0xfd, 0xfe, 0xfe, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xfe, 0xfe, 0xfd, 0xfc, 0xfc, 0xfb, 0xfa, 0xf9, 0xf8, 0xf7,
0xf6, 0xf5, 0xf3, 0xf2, 0xf0, 0xef, 0xed, 0xec, 0xea, 0xe8, 0xe6, 0xe4, 0xe3, 0xe1, 0xde, 0xdc,
0xda, 0xd8, 0xd6, 0xd3, 0xd1, 0xce, 0xcc, 0xc9, 0xc7, 0xc4, 0xc1, 0xbf, 0xbc, 0xb9, 0xb6, 0xb4,
0xb1, 0xae, 0xab, 0xa8, 0xa5, 0xa2, 0x9f, 0x9c, 0x99, 0x96, 0x92, 0x8f, 0x8c, 0x89, 0x86, 0x83,
0x80, 0x7d, 0x79, 0x76, 0x73, 0x70, 0x6d, 0x6a, 0x67, 0x64, 0x61, 0x5e, 0x5b, 0x58, 0x55, 0x52,
0x4f, 0x4c, 0x49, 0x46, 0x43, 0x41, 0x3e, 0x3b, 0x39, 0x36, 0x33, 0x31, 0x2e, 0x2c, 0x2a, 0x27,
0x25, 0x23, 0x21, 0x1f, 0x1d, 0x1b, 0x19, 0x17, 0x15, 0x14, 0x12, 0x10, 0xf, 0xd, 0xc, 0xb ,
0x9, 0x8, 0x7, 0x6, 0x5, 0x4, 0x3, 0x3, 0x2, 0x1, 0x1, 0x0, 0x0, 0x0, 0x0, 0x0 ,
0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x1, 0x1, 0x2, 0x3, 0x3, 0x4, 0x5, 0x6, 0x7, 0x8 ,
0x9, 0xa, 0xc, 0xd, 0xe, 0x10, 0x12, 0x13, 0x15, 0x17, 0x18, 0x1a, 0x1c, 0x1e, 0x20, 0x23,
0x25, 0x27, 0x29, 0x2c, 0x2e, 0x30, 0x33, 0x35, 0x38, 0x3b, 0x3d, 0x40, 0x43, 0x46, 0x48, 0x4b,
0x4e, 0x51, 0x54, 0x57, 0x5a, 0x5d, 0x60, 0x63, 0x66, 0x69, 0x6c, 0x6f, 0x73, 0x76, 0x79, 0x7c,
};
//三角波信号数据表
uchar code thr_tab[32]=
{
0x00,0x0f,0x1f,0x2f,0x3f,0x4f,0x5f,0x6f,0x7f,0x8f,0x9f,0xaf,0xbf,0xcf,0xdf,0xef,
0xff,0xef,0xdf,0xcf,0xbf,0xaf,0x9f,0x8f,0x7f,0x6f,0x5f,0x4f,0x3f,0x2f,0x1f,0x0f
};
//-------------------------------------------------------------------------------------------------------
//锯齿波信号数据表
uchar code jc_tab[33]=
{
0x00,0x08,0x0f,0x18,0x1f,0x28,0x2f,0x38,0x3f,0x48,0x4f,0x58,0x5f,0x68,0x6f,0x78,
0x7f,0x88,0x8f,0x98,0x9f,0xa8,0xaf,0xb8,0xbf,0xc8,0xcf,0xd8,0xdf,0xe8,0xef,0xf8,0xff
};
//数码管位选控制口定义
sbit LED4=P2^7;
sbit LED3=P2^6;
sbit LED2=P2^5;
sbit LED1=P2^4;
//按键口申明
sbit S1=P2^3;
sbit S2=P2^2;
sbit S3=P2^1;
unsigned char tabArry[4]; //保存显示数据
char flag=1; //按键标志,当flag=1时表示没有按下,当flag=0时表示有按键按下
int keycount=0; //按键计数
unsigned char waveth,wavetl; //用于对定时器付值
unsigned int frecount=100; //频率计数
unsigned int mbjs; //码表计数,共采32个点
//毫秒延时程序
void delayms(int ms)
{
uchar i;
while(ms--)
{
for(i=250;i>0;i--);
}
}
//键盘扫描
void keyscan()
{
if(flag==1)
{
if(S3==0) //用S3切换波形
{
delayms(2); //延时去抖
if(S3==0) //按键计数,便于切换波形
{
flag=0;
keycount++;
if(keycount>=4) keycount=0; //四种波形计数4次
}
}
if(S2==0) //频率加1 处理
{
delayms(2);
if(S2==0)
{
flag=0;
switch(keycount)
{
case 0: //正弦波频率加1
frecount++;
if(frecount>1000) frecount=0;
break;
case 1: //三角波频率加1
frecount++;
if(frecount>1000) frecount=0;
break;
case 2: //锯齿波频率加1
frecount++;
if(frecount>1000) frecount=0;
break;
case 3: //方波频率加1
frecount++;
if(frecount>1000) frecount=0;
break;
}
waveth=(65536-57603/frecount)/256; //重新计算初值
wavetl=(65536-57603/frecount)%256;
}
}
if(S1==0) //频率减1 处理
{
delayms(2);
if(S1==0)
{
flag=0;
switch(keycount)
{
case 0: //正弦波频率减1
frecount--;
if(frecount<0) frecount=999;
break;
case 1: //三角波频率减1
frecount--;
if(frecount<0) frecount=999;
break;
case 2: //锯齿波频率减1
frecount--;
if(frecount<0) frecount=999;
break;
case 3: //方波频率减1
frecount--;
if(frecount<0) frecount=999;
break;
}
waveth=(65536-57603/frecount)/256; //重新计算初值
wavetl=(65536-57603/frecount)%256;
}
}
}
if(S1!=0 && S2!=0 && S3!=0) flag=1; //判断按键是否d起
}
//数据分位
void change(char wavetype,unsigned int frequency)
{
tabArry[0]=wavetype; //显示字母,表示波形类型
tabArry[1]=frequency%1000/100; //百位
tabArry[2]=frequency%100/10; //十位
tabArry[3]=frequency%10; //个位
}
//显示函数
void display()
{
switch(keycount)
{
case 0: //显示A和正弦波的频率
change(0,frecount);
break;
case 1: //显示b和三角波的频率
change(0x0b,frecount);
break;
case 2: //显示C和锯齿波的频率
change(0x0c,frecount);
break;
case 3: //显示d和方波的频率
change(0x0d,frecount);
break;
}
P0 = table[tabArry[0]]; //送最高位段码
LED1=0; //打开对应的位选控制口
delayms(2); //显示延时
LED1=1; //关闭对应的位选控制后显示下一位
P0 = table[tabArry[1]];
LED2=0;
delayms(2);
LED2=1;
P0 = table[tabArry[2]];
LED3=0;
delayms(2);
LED3=1;
P0 = table[tabArry[3]];
LED4=0;
delayms(2);
LED4=1;
}
void Timerinit()
{
TMOD=0x01; //定时器0方式1
//定时器初值计算公式:X=65536-(T/T0)=65536-(f0/f/32)
TH0=waveth=(65536-57603/frecount)/256; //定时器初值 221184MHz
TL0=wavetl=(65536-57603/frecount)%256;
EA=1; //开总中断
ET0=1; //开定时器0中断
TR0=1; //定时器0开始计数
}
//主函数
void main()
{
Timerinit(); //定时器初始化
while(1)
{
keyscan(); //扫描按键
display(); //显示程序
}
}
void Timer0() interrupt 1
{
TH0=waveth; //重新赋初值
TL0=wavetl;
if (keycount==0) //输出正弦波
{
P1 = sin_tab[mbjs];
mbjs+=8; //256点,每隔8点输出一个数据
if(mbjs>=256)
{
mbjs=0;
}
}
else if(keycount==1) //输出三角波
{
P1 = thr_tab[mbjs];
mbjs++;
if(mbjs>=32)
{
mbjs=0;
}
}
else if(keycount==2) //输出锯齿波
{
P1 = jc_tab[mbjs];
mbjs++;
if(mbjs>=32)
{
mbjs=0;
}
}
else if(keycount==3) //输出方波
{
mbjs++;
if(mbjs>=32)
{
mbjs=0;
}
else if(mbjs<16) P1=0xff;
else P1=0x00;
}
}
对于C8051F330而言,你需要设置好SPI的时序,极性以及空闲时的状态,一般在送完一个字节后,要等待spi中断后,在能进行第二次送数据
我截取部分程序给你看看
void SPI_INT(void) //SPI初始化
{
SPI0CFG=0x40;
SPI0CN=0x01; //0000 0001最后一位是SPI使能位 SPI工作在三线主方式
SPI0CKR=0x0f; //SPI 时钟频率设置为100kHz 0x63
IE &= 0xbf; //关闭SPI中断
}
void pio_int(void) // 端口配置
{
XBR0=0x06;
XBR1=0x40;
P0MDIN=0xff; //禁止模拟输入,0为模拟,1为数字
P0MDOUT=0x0d; //0为开漏,1为推挽(ff)
P0SKIP=0x08;
P1MDIN=0xff;
P1MDOUT=0xff; //低四位用于138
P1SKIP=0x00;
P0=0xff;
P1=0xff;
}
//
SPI0DAT = sm[i];
while(!SPIF);
SPIF=0;
//这部分就是SPI的传输指令,送一个字节后,等待中断,然后清中断
标志,然后再送
//按照你想要的东西,就可以写成
for(i=0;i<12;i++)
{
SPI0DAT = sm[i];
while(!SPIF);
SPIF=0;
CLK = 1;//这个就定义成你595的所存输出
CLK = 0;
delay(1);//像你送一个595显示的话,还要延时一下
//如有更多的,就送多次再延时
}
//
我空间有个点阵驱动的程序,你可以去看看
用的就是你的这个单片机
日志名字
QQ空间247519442
C8051F330 1616点阵(SPI 、SMBus、I2C)PCF8563
很简单的。我使用的是周立功逻辑分析仪,主要分析的步骤如下。
1、把探头和SPI的接口连接起来,一定要把逻辑分析仪的信号地和被测信号地共在一起,这个非常重要。
2、设置总线(对MOSI、MISO、CS和MCLK信号和线的关系进行定义)
3、设置采样率,设置为10M就够了,存储深度设置为100k,打开Timing-State功能。
4、设置触发条件为CS的下降沿触发。
5、采集波形。
6、通过“工具”->“插件管理”选择SPI协议分析,配置一下参数。然后所有信号对应的数据都分析出来了,非常简单。
7、还可以把协议数据导出,波形数据导出。做各种测量和截图等。非常方便。
sdc
文件是在做时序分析是建立的,你在tasks窗口的compile——>timequest
timing
analysis——>timequest
timing
analyzer,双击timequest
timing
analyzer,会d出timequest
timing
analyzer设置窗口,点击左上角的file,中有new
sdc
file,点击它就能生成sdc文件
以上就是关于单片机波形发生器的设计,请大家提供思路全部的内容,包括:单片机波形发生器的设计,请大家提供思路、单片机spi通信的问题、如何采用逻辑分析仪进行SPI分析等相关内容解答,如果想了解更多相关内容,可以关注我们,你们的支持是我们更新的动力!
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)