不等式意义:表示一个命题或一个问题一般地,用纯粹的大于号“>”、小于号“通常不等式中的数是实数,字母也代表实数,不等式的一般形式为F(x,y,……,z)≤G(x,y,……,z )(其中不等号也可以为 中某一个),两边的解析式的公共定义域称为不等式的定义域,不等式既可以表达一个命题,也可以表示一个问题。
一般地,用纯粹的大于号“>”、小于号“<”连接的不等式称为严格不等式,用不小于号(大于或等于号)“≥”、不大于号(小于或等于号)“≤”连接的不等式称为非严格不等式,或称广义不等式。
总的来说,用不等号(<,>,≥,≤,≠)连接的式子叫做不等式。
其中,两边的解析式的公共定义域称为不等式的定义域。
整式不等式:整式不等式两边都是整式(即未知数不在分母上)。
一元一次不等式:含有一个未知数(即一元),并且未知数的次数是1次(即一次)的不等式。
如3-X>0同理:二元一次不等式:含有两个未知数(即二元),并且未知数的次数是1次(即一次)的不等式。
①如果x>y,那么yy;(对称性)②如果x>y,y>z;那么x>z;(传递性)③如果x>y,而z为任意实数或整式,那么x+z>y+z;(加法原则,或叫同向不等式可加性)④ 如果x>y,z>0,那么xz>yz;如果x>y,z<0,那么xz乘法原则)⑤如果x>y,m>n,那么x+m>y+n;(充分不必要条件)⑥如果x>y>0,m>n>0,那么xm>yn;⑦如果x>y>0,那么x的n次幂>y的n次幂(n为正数),x的n次幂或者说,不等式的基本性质的另一种表达方式有:①对称性;②传递性;③加法单调性,即同向不等式可加性;④乘法单调性;⑤同向正值不等式可乘性;⑥正值不等式可乘方;⑦正值不等式可开方;⑧倒数法则。
如果由不等式的基本性质出发,通过逻辑推理,可以论证大量的初等不等式。
什么是数学不等式?我是数学逆袭课,数学不等式在数学中占据重要的地位!一、不等式的定义不等式是指用不等号(<,>,≥,≤,≠)连接的式子叫做不等式。
在一个式子中的数的关系,不全是等号,含不等符号的式子,那它就是一个不等式。
如5x+6y≥8x,sinx≤1 等都是不等式。
"<"或">"连接的不等式称为严格不等式。
用"≥”“≤”连接的不等式称为非严格不等式,或称广义不等式。
二、不等式的分类比较著名的不等式有:卡尔松不等式、几何不等式、外森比克不等式、克拉克森不等式、施瓦尔兹不等式、卡尔松不等式、三角不等式、erdos不等式、Milosevic不等式、等周不等式、芬斯拉不等式、嵌入不等式、杨氏不等式、车贝契夫不等式、马尔可夫不等式、典范类不等式、佩多不等式、四边形不等式、肖刚不等式、Arakelov不等式、卡拉玛特不等式、外森比克不等式、宫冈-丘不等式、柯西—施瓦茨不等式三、不等式的基本性质有:1、对称性;2、传递性;3、加法单调性,即同向不等式可加性;4、乘法单调性;5、同向正值不等式可乘性;6、正值不等式可乘方;7、正值不等式可开方;8、倒数法则。
如果由不等式的基本性质出发,通过逻辑推理,可以论证大量的初等不等式。
结束语:以上就是数学不等式简单介绍,当然数学不等式还有更多的内涵和应用,它是数学王冠上不可或缺的一粒明珠!我是数学逆袭课,专注于培养数学黑马,致力于探讨教育问题,如果你也有兴趣,欢迎关注我,我们共同探讨,一起进步!
一般地,用纯粹的大于号“>”、小于号“<”连接的不等式称为严格不等式,用不小于号(大于或等于号)“≥”、不大于号(小于或等于号)“≤”连接的不等式称为非严格不等式,或称广义不等式。
总的来说,用不等号(<,>,≥,≤,≠)连接的式子叫做不等式。
rr通常不等式中的数是实数,字母也代表实数,不等式的一般形式为F(x,y,……,z)≤G(x,y,……,z )(其中不等号也可以为<,≤,≥,> 中某一个),两边的解析式的公共定义域称为不等式的定义域,不等式既可以表达一个命题,也可以表示一个问题。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)