昌平电脑培训分享物联网的发展有哪些影响作用

昌平电脑培训分享物联网的发展有哪些影响作用,第1张

我们在了解人工智能技术的时候,对于深度学习的概念进行了一次普及,今天我们就一起来学习一下深度学习对于物联网的发展都有哪些影响作用。下面昌平电脑培训就开始今天的主要内容吧。



技术

在物联网时代,大量的感知器每天都在收集并产生着涉及各个领域的数据。由于商业和生活质量提升方面的诉求,应用物联网(IoT)技术对大数据流进行分析是十分有价值的研究方向。这篇论文对于使用深度学习来改进IoT领域的数据分析和学习方法进行了详细的综述。从机器学习视角,作者将处理IoT数据的方法分为IoT大数据分析和IoT流数据分析。论文对目前不同的深度学习方法进行了总结,并详细讨论了使用深度学习方法对IoT数据进行分析的优势,以及未来面临的挑战。

在本系列文章中,已介绍了深度学习和长短期记忆(LSTM)网络,展示了如何生成用于异常检测的数据,还介绍了如何使用Deeplearning4j工具包。本篇文章中,将介绍开源机器学习系统ApacheSystemML如何通过动态地优化执行并利用ApacheSpark作为运行时引擎,帮助执行线性代数运算。并展示了在时序传感器数据(或任何类型的一般序列数据)上,即使非常简单的单层LSTM网络的性能也优于先进的异常检测算法。

GoogleAssistant和其他自然语言理解平台正在推动用户如何使用他们的技术。无论是执行器诸如设置计时器之类的简单任务,还是进行更复杂的任务(例如Google智能助理调整恒温器),您都可以参与其中。在这篇文章中,逐步介绍了如何构建自己的助手应用程序,通过简单地要求Google来控制AndroidThings设备来浇灌植物。

开源

tinyweb是一个用于在运行有MicroPython的ESP8266/ESP32等微型设备之上的简单轻便的>

Mynewt是一款适用于微型嵌入式设备的组件化开源 *** 作系统。ApacheMynewt使用Newt构建和包管理系统,它允许开发者仅选择所需的组件来构建 *** 作系统。其目标是使功耗和成本成为驱动因素的微控制器环境的应用开发变得容易。Mynewt提供开源蓝牙50协议栈和嵌入式中间件、闪存文件系统、网络堆栈、引导程序、FATFS、引导程序、统计和记录基础设施等的支持。

AngularIotDashboard是一个基于Angular4的物联网领域的仪表板。它是一个适用于任何浏览器的实时兼容仪表板,其目标是成为智能家居,智能办公室和工业自动化的d性前端。拥有许多可重用组件,开发者可以基于AngularIoTDashboard启发和实施自己版本的托管物联网仪表板。

硬件

FemtoUSB是一个基于Atmel的ARMCortexM0+产品ATSAMD21E18A的开源ARM开发板。其被设计成对那些对ARM设计感兴趣的人的基础起点,特别那些准备从AVR8位硬件转换到功能非常强大的ARM32位工具。其从电路板设计,原理图和零件清单完全是开源的,可以让开发者学习设计ARM芯片、编译工具链、ARM芯片的基本的电路图等等的内容。

物联网的应用领域涉及到方方面面,在工业、农业、环境、交通、物流、安保等基础设施领域的应用,有效的推动了这些方面的智能化发展,使得有限的资源更加合理的使用分配,从而提高了行业效率、效益。

在家居、医疗健康、教育、金融与服务业、旅游业等与生活息息相关的领域的应用,从服务范围、服务方式到服务的质量等方面都有了极大的改进,大大的提高了人们的生活质量;

在涉及国防军事领域方面,虽然还处在研究探索阶段,但物联网应用带来的影响也不可小觑,大到卫星、导d、飞机、潜艇等装备系统,小到单兵作战装备,物联网技术的嵌入有效提升了军事智能化、信息化、精准化,极大提升了军事战斗力,是未来军事变革的关键。

一、智能交通

物联网技术在道路交通方面的应用比较成熟。随着社会车辆越来越普及,交通拥堵甚至瘫痪已成为城市的一大问题。对道路交通状况实时监控并将信息及时传递给驾驶人,让驾驶人及时作出出行调整,有效缓解了交通压力;

高速路口设置道路自动收费系统(简称ETC),免去进出口取卡、还卡的时间,提升车辆的通行效率;公交车上安装定位系统,能及时了解公交车行驶路线及到站时间,乘客可以根据搭乘路线确定出行,免去不必要的时间浪费。

社会车辆增多,除了会带来交通压力外,停车难也日益成为一个突出问题,不少城市推出了智慧路边停车管理系统,该系统基于云计算平台,结合物联网技术与移动支付技术,共享车位资源,提高车位利用率和用户的方便程度。

该系统可以兼容手机模式和射频识别模式,通过手机端APP软件可以实现及时了解车位信息、车位位置,提前做好预定并实现交费等等 *** 作,很大程度上解决了“停车难、难停车”的问题。

二、智能家居

智能家居就是物联网在家庭中的基础应用,随着宽带业务的普及,智能家居产品涉及到方方面面。 家中无人,可利用手机等产品客户端远程 *** 作智能空调,调节室温,甚者还可以学习用户的使用习惯,从而实现全自动的温控 *** 作,使用户在炎炎夏季回家就能享受到冰爽带来的惬意;

通过客户端实现智能灯泡的开关、调控灯泡的亮度和颜色等等; 插座内置Wifi,可实现遥控插座定时通断电流,甚者可以监测设备用电情况,生成用电图表让你对用电情况一目了然,安排资源使用及开支预算;

智能体重秤,监测运动效果。内置可以监测血压、脂肪量的先进传感器,内定程序根据身体状态提出健康建议; 智能牙刷与客户端相连,供刷牙时间、刷牙位置提醒,可根据刷牙的数据生产图表,口腔的健康状况;

智能摄像头、窗户传感器、智能门铃、烟雾探测器、智能报警器等都是家庭不可少的安全监控设备,你及时出门在外,以在任意时间、地方查看家中任何一角的实时状况,任何安全隐患。看似繁琐的种种家居生活因为物联网变得更加轻松、美好。

三、公共安全

近年来全球气候异常情况频发,灾害的突发性和危害性进一步加大,互联网可以实时监测环境的不安全性情况,提前预防、实时预警、及时采取应对措施,降低灾害对人类生命财产的威胁。

美国布法罗大学早在 2013 年就提出研究深海互联网项目,通过特殊处理的感应装置置于深海处,分析水下相关情况,海洋污染的防治、海底资源的探测、甚至对海啸也可以提供更加可靠的预警。该项目在当地湖水中进行试验,获得成功,为进一步扩大使用范围提供了基础。

利用物联网技术可以智能感知大气、土壤、森林、水资源等方面各指标数据,对于改善人类生活环境发挥巨大作用。

趋势和特征

物联网近年来的主要显着趋势是由互联网连接和控制的设备的爆炸性增长。物联网技术的广泛应用意味着从一个设备到另一个设备的具体细节可能大不相同,但大多数人都具有基本特征。

物联网为将物理世界更直接地集成到基于计算机的系统中创造了机会,从而提高了效率、经济效益和减少了人力。

物联网设备的数量在 2017 年同比增长 31% 至 84 亿,预计到 2020 年将有 300 亿台。物联网的全球市场价值预计为到 2020 年达到 71 万亿美元。

环境智能和自主控制并不是物联网最初概念的一部分。环境智能和自主控制也不一定需要互联网结构。然而,(英特尔等公司)的研究发生了转变,将物联网和自主控制的概念结合起来,初步成果朝着这个方向发展,将物体视为自主物联网的驱动力。

在这种情况下,一种有前途的方法是深度强化学习,其中大多数物联网系统提供动态和交互式环境。训练代理(即 IoT 设备)在这样的环境中表现得更聪明,无法通过传统的机器学习算法(例如监督学习)来解决。

通过强化学习方法,学习代理可以感知环境状态(例如,感知家庭温度),执行 *** 作(例如,打开或关闭暖通空调)并通过最大化其长期获得的累积奖励来学习。

可以在三个级别提供物联网智能:物联网设备、边缘/雾节点和云计算。每个级别对智能控制和决策的需求取决于物联网应用的时间敏感性。例如,自动驾驶汽车的摄像头需要进行实时障碍物检测以避免发生事故。

通过将数据从车辆传输到云实例并将预测返回给车辆,这种快速决策是不可能的。相反,所有 *** 作都应在车辆本地执行。集成高级机器学习算法,包括深度学习物联网设备是一个活跃的研究领域,使智能对象更接近现实。

此外,通过分析物联网数据、提取隐藏信息和预测控制决策,可以从物联网部署中获得最大价值。物联网领域使用了各种各样的机器学习技术,从回归、支持向量机和随机森林等传统方法到卷积神经网络、LSTM和变分自动编码器等高级方法。

未来,物联网可能是一个非确定性和开放的网络,其中自动组织或智能的实体(Web 服务、SOA组件)和虚拟对象(化身)将可互 *** 作并能够独立行动(追求自己的目标)目标或共享目标)取决于上下文、情况或环境。

通过上下文信息的收集和推理以及对象检测环境变化(影响传感器的故障)并引入合适的缓解措施的能力的自主行为构成了一个主要的研究趋势,显然需要为物联网技术提供可信度。

市场上的现代物联网产品和解决方案使用各种不同的技术来支持这种上下文感知自动化,但需要更复杂的智能形式,以允许在真实环境中部署传感器单元和智能网络物理系统。

以上内容参考 百度百科-物联网

物联网,Internet of Things,简称“IoT”,即通过传感器或物理识别装置等感知技术,对物理世界进行感知,通过ICT通信传输技术将数据传输至物联网云处理平台进行计算和处理,实现人与人、人与物、物与物的链接,进而对物理世界进行管理和控制。一句话解释:互联网的升级迭代版,互联网实现人与人的链接,物联网增加人与物理世界的链接;感知物理世界的变化,并对物理世界进一步的管理和控制

萌芽期:(1991年-2004年):1994年美国麻省理工学院Kevin教授提出物联网概念,1995年,比尔盖茨在《未来之路》中构想物物互联,并未引起广泛关注。1999年,麻省理工学院首先提出物联网的定义。2003年,美国《技术评论》将传感网络技术列为未来生活的十大技术之首。

初步发展期:(2005年-2008年):2005年,国际电信联盟(ITU)发布《ITU互联网报告2005:物联网》,2008年第一届国际物联网大会在瑞士苏黎世举行。

高速发展期(2009年-至今):2009年美国政府将新能源和物联网确定为美国国家战略。2009年温家宝总理在无锡视察时提出“感知中国”,无锡率先建立“感知中国”研究中心,中科院、运营商和多所大学建立物联网研究院。中国正式开始物联网行业战略部署。2010年中国政府将物联网列为关键技术,并宣布物联网是长期发展计划的一部分。2015年,欧盟成立物联网创新联盟。2016年,NB-IoT技术即将进入规模商用阶段。2018年6月,5G通信技术成熟化,第一阶段全功能标准化工作完成,进入产业全面冲刺阶段。

总结中国物联网产业发展,大致经历:

第一阶段:智能消费产品的涌现

2012-2015年期间,消费类物联网产品一夜爆发,过后却慢慢消退。包括智能灯泡、智能插座、智能水壶、智能电饭煲等等智能产品出现在市场上。大致思路是将传统硬件产品,添加上Wi-Fi、蓝牙、ZiBbee等无线技术,再结合APP进行控制。这股热潮来的快、去的也快,因为害怕的稳定性和用户体验存在问题,再加上价格比较高,对于消费者而言性价比不高,市场认可度比较低。

第二阶段:底层技术完善

第二阶段相对于上个阶段,技术有更深层次的突破。这个时候涌现了各种各样的针对物联网的技术,比如NB-IoT、LoRa等新型的传输技术、AI算法、智能语音技术等等,边缘计算、智能计算等计算存储技术走上台,传感器产品也更加的智能化,具有更多的功能。

第三阶段:行业级应用兴起

完成技术突破之后,物联网的应用逐渐从早期的消费类应用往企业级应用发展。更多的应用于城市建设、政府政务、各行各业产业当中。

物联网IoT产业架构分四层:感知层、网络层、平台层、应用层;物联网IoT产业链:端——管——边——云——用

随着云端数据处理能力开始下沉,更加贴近数据源头,使得边缘计算成为物联网产业的重要关口;将来将有75%的数据需要在网络的边缘侧分析、处理和存储。因而物联网产业链由之前的“端——管——云——用”发展为现在的“端——管——边——云——用”;

“端”:物联网终端,主要是完成数据采集以及向网络端发送的作用;包含芯片、感知技术(传感器+识别技术)、 *** 作系统;

“管”:管道层,保证通信的作用,无线连接、卫星和量子通信等方式;

“边”:边缘计算,将集中式架构分解成边缘位置的点;

“云”:云平台,主要进行数据的计算和存储;包含云计算平台和AI技术;按厂商类型分:运营商、ICT、互联网和工业制造厂商以及第三方物联网平台;按商业模式分PaaS和本地部署;按照平台功能可以划分:设备管理平台、连接管理平台、应用开发平台和业务分析平台;

“用”:物联网IoT应用层,落地到不同行业应用场景中;三大业务主线:消费性物联网、政策驱动物联网和生产性物联网;(政策驱动物联网和生产性物联网并称产业物联网)

从产业集聚发展情况来看,我国已初步形成以北京—天津、上海—无锡、深圳—广州、重庆—成都为核心的 环渤海、长三角、珠三角、中西部 地区四大物联网产业集聚区的空间布局。

其中, 环渤海地区 凭借丰富的产学研资源和总部优势,成为我国物联网产业重要的研发、设计和生产制造基地; 长三角地区 以上海、无锡双核发展为带动,整体发展比较均衡,在技术研发与产业化、应用推广方面发挥了引领示范作用; 珠三角地区 是国内物联网市场化最成熟、体系最完备的地区,目前已形成了一批自主的、竞争力强的物联网应用技术成果和信息增值服务模式,产业规模领先其他地区; 中西部地区 软件、信息服务、传感器等领域发展迅猛,成为第四大产业基地,且在自然资源和人力资源方面均存在优势,对物联网产业链底端感知层具有一定的促进作用。

产业集聚区的形成有利于产业规模效应凸显,形成产业链;有助于改善协作条件,节约生产成本;而且能更好的发挥核心城市的辐射带动作用,促进区域一体化发展。目前,四大产业集聚区相互独立、各有特色,汇聚了一批具有全国影响力的龙头企业,产业链逐渐完善,研发机构和公共服务等配套体系基本完备。

要想成为系统的的物联网工程师需要系统学习。由浅入深地对嵌入式物联网技术以及Linux平台全面掌握,能够独立胜任物联网开发、嵌入式Linux应用开发、5G周边产品开发、底层系统开发、设备驱动开发、从终端到云技术开发以及Linux衍生产品等多方面工作。可以更加系统的了解嵌入式物联网相关行业知识。具体所学知识包括:1嵌入式C语言高级编程及行业应用2各常用数据结构与算法相关知识,以及面向接口的编程3GUI图形库应用开发技术4Linux *** 作系统使用5Linux系统编程6Linux系统网络编程7Linux网络路由及数据交换技术8嵌入式数据库9嵌入式C++语言编程,以及面向模板库的应用开发10OpenCV、OpenGL等图像处理11AI模型训练及场景定位识别应用12RFID场景应用13zigbee低功耗网络技术14Bluebooth组网技术15MQTT云平台搭建技术16NB-IOT各大云平台通信技术17基于5G技术的嵌入式物联网行业应用18ARM体系结构19Bootloader启动过程20常见Bootloader源码及平台移植21嵌入式Linux内核裁减以及移植 22嵌入式Linux平台搭建技术及技巧

物联网( IoT ,Internet of things )即“万物相连的互联网”,是互联网基础上的延伸和扩展的网络,将各种信息传感设备与互联网结合起来而形成的一个巨大网络,实现在任何时间、任何地点,人、机、物的互联互通。

1、射频识别技术

射频识别技术(Radio Frequency Identification,简称RFID)。RFID是一种简单的无线系统,由一个询问器(或阅读器)和很多应答器(或标签)组成。标签由耦合元件及芯片组成,每个标签具有唯扩展词条一的电子编码。

标签附着在物体上标识目标对象,它通过天线将射频信息传递给阅读器,阅读器就是读取信息的设备。RFID技术让物品能够“开口说话”。这就赋予了物联网一个特性即可跟踪性。就是说人们可以随时掌握物品的准确位置及其周边环境。

2、传感网

MEMS是微机电系统( Micro - Electro - Mechanical Systems)的英文缩写。它是由微传感器、微执行器、信号处理和控制电路、通讯接口和电源等部件组成的一体化的微型器件系统。

其目标是把信息的获取、处理和执行集成在一起,组成具有多功能的微型系统,集成于大尺寸系统中,从而大幅度地提高系统的自动化、智能化和可靠性水平。

3、M2M系统框架

M2M是Machine-to-Machine/Man的简称,是一种以机器终端智能交互为核心的、网络化的应用与服务。它将使对象实现智能化的控制。M2M技术涉及5个重要的技术部分:机器、M2M硬件、通信网络、中间件、应用。

基于云计算平台和智能网络,可以依据传感器网络获取的数据进行决策,改变对象的行为进行控制和反馈。

4、云计算

云计算旨在通过网络把多个成本相对较低的计算实体整 合成一个具有强大计算能力的完美系统,并借助先进的商业 模式让终端用户可以得到这些强大计算能力的服务。

如果将计算能力比作发电能力,那么从古老的单机发电模式转向现 代电厂集中供电的模式,就好比现在大家习惯的单机计算模 式转向云计算模式,而“云”就好比发电厂,具有单机所不能比拟的强大计算能力。

扩展资料:

物联网功能

1、获取信息的功能

主要是信息的感知、识别,信息的感知是指对事物属性状态及其变化方式的知觉和敏感;信息的识别指能把所感受到的事物状态用一定方式表示出来。

2、传送信息的功能

主要是信息发送、传输、接收等环节,最后把获取的事物状态信息及其变化的方式从时间(或空间)上的一点传送到另一点的任务,这就是常说的通信过程。

3、处理信息的功能

是指信息的加工过程,利用已有的信息或感知的信息产生新的信息,实际是制定决策的过程。

4、施效信息的功能

指信息最终发挥效用的过程,有很多的表现形式,比较重要的是通过调节对象事物的状态及其变换方式,始终使对象处于预先设计的状态

参考资料来源:百度百科-物联网

数据分析、机器学习与物联网
我们当前所处的世界,联网程度不断上升,低成本传感器和分布式智能也在不断普及,产业即将面临这一切带来的革命性的冲击;同时,在此过程中还会产生大量的数据,其规模将庞大到远远超过人类所能处理的范畴。对此,企业是否能足够迅速地适应并演进自身的业务,以维持在竞争格局中所处的位置?面对我们栖身的环境中植入的这些全新的信息来源和智能设备,人类应当如何掌握它们并从中获益?利用不断演进的技术组织机构将需要建立起内部数据仓库,以便能够利用新的数据源和数据流。智能接入设备亦将在某些情况下取代人的角色,它们将能够自行决策、执行自我调整,或是根据需要引发对自身的纠正和修复。在另一些情景中,众多设备的集合将聚集在一起成为完整的系统,这样的系统可以采用新的方法进行优化;而由系统聚集成的系统,将会彼此共享数据,并成为由数据和设备组成的生态系统。机器学习(指从数据中推导出意义的众多方法)注定将成为这个生态系统中的一部分;此外,随着企业着手为物联网(IoT)做准备,传统业务和数据分析技术也同样将被纳入到该生态系统之中物联网——某些人更愿意称之为“万物互联”(Internet of Everything)——正处于不断上升的轨道上。一项Gartner研究指出,在2020年IoT单元的数量将达到260亿,而IoT产品和服务的市值将达到3000亿美元1。另外,GE在工业互联网(Industrial Internet)——这一概念包含用于监控和优化工业设备(例如喷气式引擎、铁路机车、动力涡轮机和制造工艺)性能的机制和应用——领域已经活跃了很长时间。根据GE的估算和预测,在接下来20年中,工业互联网将帮助全球GDP产值提高10到15万亿美元(没错,万亿量级)。当然,围绕着已问世的全新技术和正在逐步浮现的技术概念,市场中充斥着大量炒作。例如,Gartner备受争议的 “成熟度曲线”(注:也有些人使用“炒作周期”这一贬义说法)报告就把IoT摆在了“翘首以望的顶峰”的位置上(而大数据作为之前的热点,已经进入了“理想幻灭的低谷” 3)。然而,哪怕企业家们为之表现出群情激昂的兴奋,或是记者们在笔下展现出了对未来的狂热展望,在现实中依旧存在着大量的挑战,组织机构必须克服它们,才能够真正乘上这次技术演进的东风。挑战组织机构必须聚焦于:了解产品技术和IT领域中,企业能力的相对成熟度;了解可以纳入哪些类型的IoT功能,以及新能力将会在哪些方面对客户价值带来影响;了解机器学习和预测分析模型的角色;基于市场变化的迅捷程度和竞争对手的相对敏捷度,重新思考业务模型和价值链。接下来,让我们对这些挑战逐一进行更详细地分析。理解产品和IT成熟度可以从产品和IT两个维度分别进行分析。首先,产品组合的成熟度如何?它是属于变更较缓慢且逐步演进的传统类型的产品,还是属于前进速度更快,同时具有更复杂生态系统的产品?矿产设备在技术上非常复杂。并且,与科学研究仪器相比,它拥有更为漫长的设备生命周期,和相对更缓慢的演进速度。然而,这并不意味着科研仪器的公司,在利用IoT产品进行系统优化方面更具优势。另一个需要考虑的因素是IT流程的成熟度。各种类型的组织机构都可能会因采用IoT而获益;然而,要想达成这一目标,它们所需采用的模型却各不相同。让我们进一步分析一下IT成熟度水平这个因素。举例来说,科学研究仪器供应商或许拥有先进技术,但却可能缺乏强有力的IT架构、流程和IT治理能力。与之相反,矿业设备制造商或许拥有非常成熟的内部IT流程。对科学研究仪器公司而言,IoT将让它们能够对安置在现场的仪器设备进行功能升级;但面对由多种类型设备组成的实验室信息生态系统库,公司并不一定愿意尝试去进行优化。(当然,以IT作为成本中心——例如内部IT管理——方面的成熟度不足,并不等于以IT作为利润中心——例如IT产品——方面成熟度的缺失;但当开发或拓展IT服务的时候,许多组织机构都选择在现有的基础IT能力之上构建。)在去年的哈佛商业评论(Harvard Business Review)中,讨论了一个矿业设备领域的例子:Joy Global是一家矿业设备制造商,其专家团队横跨与采矿作业相关的多种系统和流程。Joy Global以此为依托,针对来自多家供货商的一系列设备,提供监控、维护和优化的服务4。了解IoT能力接下来,应该考虑一下使用智能联网设备中的哪些能力。刚刚提到的哈佛商业评论刊登的文章4指出,IoT包含四种类型的能力:监视——传感器提供关于运行环境、产品使用和性能方面的数据;控制——可以控制并定制个性化产品功能;优化——来自监视与控制的反馈回路,能够提供更高的效率、更好的性能、预防性维护,以及诊断和修复;自治——监视、控制和优化将支持独立运行、不同系统间的协作、与环境交互、个性化、补给,以及自我诊断和修复。这四个层级的能力,将为重新定义供应链并重新配置价值链提供支持。我们不应该抱有产品的功能应固定不变的观点;相反,我们应该认为它们将更具灵活性和适应性。那些智能联网设备和产品将具有可变特性,并能够随着用户需求的变化而改变。在数年以前,软件制造商就已经认识到了这一点。而现在,物理对象也正在逐渐转变为软件驱动功能的载体或容器。上述这些层级的能力要求越来越精密的数据分析方法——从收集和应用数据,到支持算法自身运用数据并在同时进行学习。第一个层级的能力——监视——将成为一套实时的机制,我们可以运用它更好地了解现场情况和用户需求,并提供新的能力。这意味着组织机构的传统产品和服务将不再泾渭分明,而且二者的边界将彼此渗透。在过去,现场设备的维护由某个现场服务承包公司承担,设备制造商的业务并不涉及此环节。而在智能设备与监视能力结合后,设备可以在故障发生前将所需的服务提前告知制造商。同时,设备制造商也可以将常规维护纳入自己的服务范畴。不过,如果利润和物流对组织机构而言是个问题的话,那么复杂的维修工作将依旧由专业承包商完成。这一“去中介化”(disintermediation)的模式也可以运用到分发链中。设备可以自动发起补充供应的请求,从而降低甚至消除供应链中的物流和库存压力。控制是建立在监视之上的更复杂的应用。我们可以监视设备运行情况,并通过控制设备的多个部分或多个系统,来扩展人工干预的边界。想象一下,在 *** 作大部分功能都是自动化执行的系统或机器时,人类所扮演的角色:人类指导机器运转,并寻找系统设计的时候没有预料到(或是基于经济划算的角度未设计应对预设)的边界条件、异常和例外。接下来,人类使用自己的判断做出变更、纠正或调整。我们并不需要(在空间上)与设备在一起,或许我们也无需实时监视它们(这取决于流程)。我们通过监视层面采集数据并进行处理(某些数据处理必须在特定时刻完成),并通过控制层面将这些数据实时(或准实时)地运用到设备或装置的运行上。需要组织机构做出的战略决策是,是否以及何时在产品中提供更多的控制能力,以及是将其作为一种服务向客户开放,还是让客户拥有这些功能。第三个层级的能力——优化——可以拓展到某个单体对象、一系列对象,或是一套由来自多家制造商、使用不同技术的对象组成的生态系统的表现方面。是否将提供的服务拓展到这一领域,取决于围绕着价值链和流程边界的知识和经验的水平。前面提到的矿业的例子,反映出Joy Global与供应商相比的优势,主要在于拥有在流程生态系统中更加聚焦的视角。以卡车制造商为例,它无法很好地优化复杂的矿业设备,但却会凭借对自己的一系列卡车(以及潜在的一系列其他制造商生产的卡车)进行优化而获益——如果行业动态确实具有商业意义的话。要将优化的范围延伸到独立运行,还需要对这三个层级的能力进行一些拓展,以支持与环境及其他系统进行受限程度更低的交互。自治要求围绕着算法提供更多的智能,以便应对计划外的情况——程序员和系统工程师未能明确设计这些情况下的方案。自主运行需要整合具有适应性的机器学习方法,以应对新出现的情况,并将之纳入到用于监视、控制和优化的核心算法中。了解分析和机器学习2014年11月,施乐公司帕洛阿尔托研究中心的Mike Kuniavsky在IDTechEx上进行了一场名为“IoT领域中预测分析方面的用户体验”的演讲。在演讲中他表示,我们应该将几乎所有功能都存放(或是在不久的将来存放)在云上。数据和功能可以从任何位置、通过任何设备访问。而专业设备则提供用户访问数据的环境。健康手环可以通过iPhone或笔记本电脑,在特定的锻炼环境中访问用户的身体健康数据。在这种情况下,健康手环扮演了IoT传感器的角色,同时也提供了访问和使用数据的一种途径,而且它还通过软件功能包含了其他一些设备(例如计步器)的能力。设备上产生的数据可以为厂家提供额外的洞见,帮助其了解消费者的使用情况和喜好,并藉此升级功能或开发新特性。如果汇聚来自用户群的数据并结合其他数据集,那么新的洞见可以阐明流行病方面的数据、人群活动水平、生活方式和人口统计数据。对市场人员、健康服务提供者、保险公司和政府机构来说,这些信息具有宝贵的价值。(当然,我们必须认真对待隐私和数据使用许可方面的责任。)我们可以使用机器学习算法,基于这些数据模式作出预测。例如,在一份来自Mayo Clinic的研究中,发掘出了活动数据与心脏病人恢复速度的相关性5。同样的机器学习和预测算法也是许多联网智能消费设备的基础。例如,Nest恒温器是一套能够使用数据模式的设备,它预测消费者对于某个特定房间、在一天中的某个特定时刻的温度要求。(另一个控制和优化的例子体现在聚居区的层面。在获得了业主许可的情况下,电力设施可以通过远程调节的方式,控制成百上千的Nest设备,将室温调高或调低几度,从而完成高峰期的用能负载调度)。这类消费设备涵盖了从声音模式(例如亚马逊的个人助理输入设备Echo6)到更复杂的行为和活动模式(例如捷豹的路虎监视系统,它依赖于一套复杂的软件系统,该系统让汽车能够学习、预测和检查,并提醒车上的乘客帮助驾驶员自动委派次要任务,以便驾驶员将更多的注意力集中在驾驶上7)进行学习的范围。优化算法通过使用机器学习机制,来利用从动态环境下交互的传感器和智能设备传回的数据。算法不能基于特定的参数,精确地预测这些多变的情况,而是需要不断地感知、响应并适应。例如,随着汽车从驾驶员身上分担了更多的责任,它们需要与周边环境中更多的数据来源进行交互(传感器、灯光、其他车辆等等)。在工业自动化、物流和交通运输、电力网络与能源系统、交通管理、安全系统以及其他“系统的系统”等领域中的各类应用,都将让机器直接与其他机器进行交流。此外,这些应用还将基于能够演进和自适应的算法,帮助机器翻译数据流,从而使机器能够依据给定的运行参数达到要求的最终状态。反思业务模型和价值链智能联网设备要求组织机构重新检视,它们处在市场中的什么位置、以什么方式创造价值,以及这些价值将如何随着竞争环境和信息生态系统的演进而增加或减少。分析将帮助验证某些决策(例如,在对特性进行变更或是增加服务和功能后,获得实时使用数据);不过,市场新进入者和新的价值链结构或许会对业务模式带来巨大的转变,而基于公司传统业务模式做出的分析将不再具有相关性。因此,产品或服务的基础,或许会转变为来自传统产品的数据流,而不是来自产品本身的收入。新的业务模式将得以延展,甚至有可能远远超出产品本身的范畴,覆盖上游供应商或下游消费者。最重要的是,所有这些可能性,都会要求组织机构拥有围绕着其内部数据健康度和用于分析的基础设施的基础能力:数据“打捞”(curation)、所有制和质量标准、具有一致性的企业架构、干净整洁地集成在一起的系统、自动化的数据载入流程,以及成熟的分析专家。如果欠缺或未能有效管理这些基础条件,组织机构将很难进行快速反应,并演化出新的分析和数据管理功能与能力。IoT将基于数据流和复杂的方法,从信息中获取洞见,并通过与企业知识整合,将之运用到价值创造方面。而不具备这些能力的组织机构将在市场上落后,或是降级到低价值、低利润的层次。数据被称为“新的石油”——我们可以拓展这一比喻,这意味着通过分析能力中的知识提炼环节,数据将被精炼为高价值产品。组织机构现在就需要在构建此类基础设施的方面投入资源,以便为接下来数年中应对供应链和价值创造环节的转型、扰动和颠覆做好准备。信息敏捷性将成为必备的核心能力。

原标题:2019年中国物联网行业市场分析:规模化应用时,融合各行各业推动智能化转型

物联网融合各行各业推动智能化转型

物联网作为全新的连接方式,近年来呈现突飞猛进的发展态势。全国人大代表、小米集团董事长兼CEO雷军表示,在中国,物联网的大规模应用与新一轮科技与产业变革融合发展,预计2022年,中国物联网行业市场规模将超过724万亿元。他表示,各行各业的智能化转型如火如荼,物联网作为连接人、机器和设备的关键支撑技术,应加快推动布局,抓智能化转型机遇。

工业物联:助制造业实现“智能+”

政府工作报告指出,要打造工业互联网平台,拓展“智能+”,为制造业转型升级赋能。在雷军看来,推动工业物联网的应用,是实现制造业“智能+”的必要途径。

他表示,随着数字经济新引擎5G技术的布局,将能满足机器类通信、大规模通信、关键性任务通信对网络速率、稳定性和时延的高要求,因此物联网应用场景十分广泛,尤其与车联网、无人驾驶、超高清视频、智能家居等产业深度融合,进一步应用到制造业、农业、医疗、安全等领域,为各行各业带来新的增长机遇。

前瞻产业研究院发布的《中国物联网行业应用领域市场需求与投资预测分析报告》统计数据显示,2015年全球物联网设备数量仅仅38亿台。截止至2018年底全球联网设备数量已经超过170亿,扣除智能手机、平板电脑、笔记本电脑或固定电话等连接之外,物联网设备数量达到70亿台。预测2019年全球物联网设备数量将达83亿台。并预测在2025年全球物联网设备数量将突破200亿台。

全球物联网市场的支出预计将在2017年增长37%,至1510亿美元。由于物联网的市场加速,这些估计数已向上修正。2017年全球物联网市场规模达到1100亿美元,截止至2018年末全球物联网市场规模增长至1510亿美元,并预测在2025年全球物联网市场规模将达15670亿美元。

2015-2025年全球物联网设备数量统计情况及预测

数据来源:前瞻产业研究院整理

2017-2025年全球物联网市场规模统计情况及预测(单位:十亿美元)

数据来源:公开资料、前瞻产业研究院整理

雷军表示,目前全球制造业竞争推动工厂向智能化转型,物联网作为连接人、机器和设备的关键支撑技术受到企业的高度关注。即将布局的5G技术优势,将能够较好满足工业控制需求,同时为制造企业提供远程控制和数据流量管理工具,以便更高效智能地管理大量的设备,并通过无线网络对这些设备进行软件更新。

雷军建议,我国应加大对高端装备、智能制造、工业物联网等重点领域的财税金融支持力度,引导中央、地方产业投资基金和社会资本,围绕大型制造企业上下游进行垂直改造,加强自动化产线、无人工厂等重大技术研发和成果转化,打造虚拟的产业闭环,提高产业的生产效率和整体国际竞争力。

农业物联万物生长数字化:物联网+农业会迎来怎样的“春天”

雷军表示,乡村振兴战略是以发展和创新的眼光推进现代农业建设。实施乡村振兴战略,就是推进农业农村的现代化,以创新驱动乡村振兴发展。

他认为,随着物联网在农业领域的应用越来越广泛,5G技术的应用将为建设智慧农业、数字乡村奠定坚实科技基础,带动农业实现发展变革。

什么是智慧农业呢

按照业界的说法,智慧农业以智慧生产为核心,智慧产业链为其提供信息化服务支撑。目前我国智慧农业有四大应用场景:数据平台服务、无人机植保、农机自动驾驶以及精细化养殖。

雷军建议,国家有关部门应制定出台5G农业应用补贴和优惠政策,并鼓励社会资本、运营商、互联网企业等共同参与,因地制宜规划打造智慧农业示范区、试验区,并在经验成熟后进行全国推广,全面提升农业领域的高新科技应用程度。

例如在养殖业,通过无线传感器网络技术,进行基本信息管理、疾病档案管理、防疫管理、营养繁殖管理,发展智慧养殖,实现数字化养殖。

在植保方面,借助物联网技术自动探测和记录区域内的微气候、墒情等环境信息,并结合植物保护专家系统来精确地预测病虫害的发生,从而通过无人机喷洒农药,精准高效解决农业生产的植保问题。

交通物联:无人驾驶或将最早“引爆”

“在5G众多的应用场景中,无人驾驶和车联网被认为是最有可能出现的引爆点。”雷军表示,智慧交通对通信网络有着极高的要求,而大带宽、低时延、海量的连接数量、严密的覆盖,这些都是5G技术的核心优势。

在雷军看来,智慧交通最可能爆发,一方面因无人驾驶具有巨大的节能潜力,在减少交通事故、改善拥堵、提高道路及车辆利用率等方面意义深远,并可直接带动智能汽车后市场等产业的快速发展。

另一方面,全球车联网产业进入快速发展阶段,信息化、智能化引领,全球车联网服务需求逐渐加大。基于5G技术的应用,智能交通领域将快速进入发展上行区间。

了解到,在重庆,长安、小康、力帆等汽车企业,均与百度的智能驾驶Apollo开放平台展开合作,包括自动驾驶全技术链流程、功能安全及信息安全、车联网、云服务等领域。

雷军建议,国家应研究、制定和出台关于智能交通的中长期发展目标,制定相应的法律法规和行业标准支持产业发展。尤其针对无人驾驶汽车的安全责任问题、技术试验问题、车联网的国家标准规范、智能芯片应用等产业发展关键点进行前置研判,通过鼓励性政策支持交通运输领域智能、安全、可控发展。

医疗物联:智能化就诊为“健康中国”加速

“物联网技术在医疗行业也有很广泛的应用空间。”雷军说,服务患者方面,可以采用LBS技术实现智能导诊,优化就诊流程,还可以借助可穿戴传感器和服务解决方案进行远程护理。

在保障设备质量方面,可以采用各类专用传感器,跟踪设备使用情况,借助预测性维护来修复关键医疗设备存在的潜在问题,完善设备运维体系。

环境监测方面,可以通过传感器对ICU室、手术室等特殊地点进行环境监测和预警。同时,基于医疗护理全流程的健康大数据,在安全保护前提下的数据标准细化、完善,以及数据网络的综合利用也显得尤为迫切。

在业界看来,在推进智慧医疗体系建设的大背景下,有多个方面的需要关注。比如,互联网医疗相关服务体系,包括发展互联网医疗、互联网+公共卫生服务、互联网+家庭医生签约等;另外还有医疗行业数据安全和服务质量安全。

雷军表示,要推动医疗实现智慧化,国家有关部门应逐步推动新技术在医疗卫生领域的应用,加快完善医疗物联网和健康大数据相关标准,制定医疗智能可穿戴设备及配套信息平台行业标准。

同时,出台针对物联网企业在医疗领域投入科学研究、应用开发的鼓励政策,使云计算、人工智能、虚拟现实/增强现实、物联网、区块链等技术在医疗卫生行业更好地集成创新和融合应用,满足人民日益增长的健康医疗新需求。

提高创新能力大力发展商业航天产业

关注物联网发展的同时,雷军今年参会还重点关注了在2018年热火朝天的商业航天的发展。

在雷军看来,航天是当今世界最具挑战性和广泛带动性的高科技领域之一,为服务国家发展大局和增进人类福祉作出了重要贡献。

近年,在运载、卫星和空间应用等领域,涌现出太空探索公司(SpaceX)、蓝色起源(BlueOrigin)、一网(OneWeb)等大批商业航天公司,被认为是最为活跃的创业领域之一。

雷军说,商业航天行业规模未来预计可达数万亿美元,将迎来空前的发展机遇,可重复使用火箭、巨型商业星座、商业载人空间站等航天计划,正在逐渐成真,彰显出商业航天推进技术进步和产业发展的巨大力量。

雷军建议,首先,我国应加快推动航天立法,确保民营企业长期稳定、合理有效利用空间资源的权利。建立商业航天市场准入退出、公平竞争、保险和赔偿、安全监管等机制,构建较为完善的商业航天法律体系。

雷军表示,商业航天属于快速发展的新兴行业,门槛高、投资大、战略意义显著,比多数产业更容易受到政府监管和行业政策的影响。

雷军建议,可由政府统筹,国企、民企多方聚力,布局商业航天产品智能制造,鼓励民企参与航天装备制造相关的国家重点项目,加速颠覆性航天技术创新与应用。

同时,制定商业航天装备产品量产及上下游企业的培育政策及实施细则,加大航天智能制造技术共享和转化力度,开放国家航天制造基础设施,颁布航天试验设施共享目录、有偿使用收费标准等。

在此基础上,雷军建议,应完善落实政府采购商业航天产品与服务机制,开放商业航天公司的行业准入,拓展商业服务与应用领域。

例如,可以简化商业火箭发射、航天测控、无线电频率等审批程序,引导鼓励民营企业战略性空间资源布局,承担轨道环境有序可控的应尽责任;可以进一步开放已有发射场,新增发射工位,满足高频次商业发射服务需求等。


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/dianzi/12977879.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-05-29
下一篇 2023-05-29

发表评论

登录后才能评论

评论列表(0条)

保存