什么是插值法

什么是插值法,第1张

插值法是函数逼近的重要方法之一, 它是求近似函数的一种方法,有着广泛的应用。

插值法有很多种,其中以拉格朗日(Lagrange)插值和牛顿(Newton)插值为代表的多项式插值最有特点,常用的插值还有Hermite插值,分段插值和样条插值等。这里只给出Lagrange插值、Newton插值 、分段线性插值和样条插值的构造过程及程序。

1.Lagrange插值

Lagrange插值是将待求的n次多项式插值函数Pn(x)改写成另一种表示方式,再利用插值条件确定其中的待定插值基函数,从而求出插值多项式。Lagrange插值是多项式插值,它成功地用构造插值基函数的方法解决了求多项式插值函数出现的病态问题。

插值法原理:

数学内插法即“直线插入法”。

其原理是,若A(i1‚1)‚B(i2‚2)为两点,则点P(i‚)在上述两点确定的直线上。而工程上常用的为i在i1‚i2之间,从而P在点A、B之间,故称“直线内插法”。数学内插法说明点P反映的变量遵循直线AB反映的线性关系。上述公式易得。A、B、P三点共线,则(-1)(i-i1)=(2-1)(i2-i1)=直线斜率,变换即得所求。

含义:

插值法又称“内插法”,是利用函数f (x)在某区间中插入若干点的函数值,作出适当的特定函数,在这些点上取已知值,在区间的其他点上用这特定函数的值作为函数f (x)的近似值,这种方法称为插值法。如果这特定函数是多项式,就称它为插值多项式。

注意:

(1)“内插法”的原理是根据等比关系建立一个方程,然后解方程计算得出所要求的数据。

例如:假设与A1对应的数据是B1,与A2对应的数据是B2,A介于A1和A2之间,已知与A对应的数据是B,则可以按照(A1-A)/(A1-A2)=(B1-B)/(B1-B2)计算得出A的数值。

(2)仔细观察一下这个方程会看出一个特点,即相对应的数据在等式两方的位置相同。例如:A1位于等式左方表达式的分子和分母的左侧,与其对应的数字B1位于等式右方的表达式的分子和分母的左侧。

(3)还需要注意的一个问题是:如果对A1和A2的数值进行交换,则必须同时对B1和B2的数值也交换,否则,计算得出的结果一定不正确。

原理及适用函数不同。

据csdn网站显示,二次插值法是用于一元函数在确定的初始区间内搜索极小点的一种方法。而是把一条线段分割为两部分,使其中一部分与全长之比等于另一部分与这部分之比,适用于单峰函数。

0618法又称黄金分割法,是优选法的一种。是在优选时把尝试点放在黄金分割点上来寻找最优选择。

不清楚你的具体问题,给你如下的例子。你可以参考下。

§2 插值问题

在应用领域中,由有限个已知数据点,构造一个解析表达式,由此计算数据点之间的函数值,称之为插值。

实例:海底探测问题

某公司用声纳对海底进行测试,在5×5海里的坐标点上测得海底深度的值,希望通过这些有限的数据了解更多处的海底情况。并绘出较细致的海底曲面图。

一、一元插值

一元插值是对一元数据点(xi,yi)进行插值。

1. 线性插值:由已知数据点连成一条折线,认为相临两个数据点之间的函数值就在这两点之间的连线上。一般来说,数据点数越多,线性插值就越精确。

调用格式:yi=interp1(x,y,xi,’linear’) %线性插值

zi=interp1(x,y,xi,’spline’) %三次样条插值

wi=interp1(x,y,xi,’cubic’) %三次多项式插值

说明:yi、zi、wi为对应xi的不同类型的插值。x、y为已知数据点。

例1:已知数据:

x 0 1 2 3 4 5 6 7 8 9 1

y 3 5 1 14 16 19 6 4 8 15 2

求当xi=025时的yi的值。

程序:

x=0:1:1;

y=[3 5 1 14 16 1 6 4 8 15 2];

yi0=interp1(x,y,0025,'linear')

xi=0:02:1;

yi=interp1(x,y,xi,'linear');

zi=interp1(x,y,xi,'spline');

wi=interp1(x,y,xi,'cubic');

plot(x,y,'o',xi,yi,'r+',xi,zi,'g',xi,wi,'k-')

legend('原始点','线性点','三次样条','三次多项式')

结果:yi0 = 03500

要得到给定的几个点的对应函数值,可用:

xi =[ 02500 03500 04500]

yi=interp1(x,y,xi,'spline')

结果:

yi =12088 15802 13454

(二) 二元插值

二元插值与一元插值的基本思想一致,对原始数据点(x,y,z)构造见世面函数求出插值点数据(xi,yi,zi)。

一、单调节点插值函数,即x,y向量是单调的。

调用格式1:zi=interp2(x,y,z,xi,yi,’linear’)

‘liner’ 是双线性插值 (缺省)

调用格式2:zi=interp2(x,y,z,xi,yi,’nearest’)

’nearest’ 是最近邻域插值

调用格式3:zi=interp2(x,y,z,xi,yi,’spline’)

‘spline’是三次样条插值

说明:这里x和y是两个独立的向量,它们必须是单调的。z是矩阵,是由x和y确定的点上的值。z和x,y之间的关系是z(i,:)=f(x,y(i)) z(:,j)=f(x(j),y) 即:当x变化时,z的第i行与y的第i个元素相关,当y变化时z的第j列与x的第j个元素相关。如果没有对x,y赋值,则默认x=1:n, y=1:m。n和m分别是矩阵z的行数和列数。

例2:已知某处山区地形选点测量坐标数据为:

x=0 05 1 15 2 25 3 35 4 45 5

y=0 05 1 15 2 25 3 35 4 45 5 55 6

海拔高度数据为:

z=89 90 87 85 92 91 96 93 90 87 82

92 96 98 99 95 91 89 86 84 82 84

96 98 95 92 90 88 85 84 83 81 85

80 81 82 89 95 96 93 92 89 86 86

82 85 87 98 99 96 97 88 85 82 83

82 85 89 94 95 93 92 91 86 84 88

88 92 93 94 95 89 87 86 83 81 92

92 96 97 98 96 93 95 84 82 81 84

85 85 81 82 80 80 81 85 90 93 95

84 86 81 98 99 98 97 96 95 84 87

80 81 85 82 83 84 87 90 95 86 88

80 82 81 84 85 86 83 82 81 80 82

87 88 89 98 99 97 96 98 94 92 87

其地貌图为:

对数据插值加密形成地貌图。

程序:

x=0:5:5;

y=0:5:6;

z=[89 90 87 85 92 91 96 93 90 87 82

92 96 98 99 95 91 89 86 84 82 84

96 98 95 92 90 88 85 84 83 81 85

80 81 82 89 95 96 93 92 89 86 86

82 85 87 98 99 96 97 88 85 82 83

82 85 89 94 95 93 92 91 86 84 88

88 92 93 94 95 89 87 86 83 81 92

92 96 97 98 96 93 95 84 82 81 84

85 85 81 82 80 80 81 85 90 93 95

84 86 81 98 99 98 97 96 95 84 87

80 81 85 82 83 84 87 90 95 86 88

80 82 81 84 85 86 83 82 81 80 82

87 88 89 98 99 97 96 98 94 92 87];

mesh(x,y,z) %绘原始数据图

xi=linspace(0,5,50); %加密横坐标数据到50个

yi=linspace(0,6,80); %加密纵坐标数据到60个

[xii,yii]=meshgrid(xi,yi); %生成网格数据

zii=interp2(x,y,z,xii,yii,'cubic'); %插值

mesh(xii,yii,zii) %加密后的地貌图

hold on % 保持图形

[xx,yy]=meshgrid(x,y); %生成网格数据

plot3(xx,yy,z+01,'ob') %原始数据用‘O’绘出

2、二元非等距插值

调用格式:zi=griddata(x,y,z,xi,yi,’指定插值方法’)

插值方法有: linear % 线性插值 (默认)

bilinear % 双线性插值

cubic % 三次插值

bicubic % 双三次插值

nearest % 最近邻域插值

例:用随机数据生成地貌图再进行插值

程序:

x=rand(100,1)4-2;

y=rand(100,1)4-2;

z=xexp(-x^2-y^2);

ti=-2:25:2;

[xi,yi]=meshgrid(ti,ti); % 加密数据

zi=griddata(x,y,z,xi,yi);% 线性插值

mesh(xi,yi,zi)

hold on

plot3(x,y,z,'o')

欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/langs/11673120.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-05-17
下一篇 2023-05-17

发表评论

登录后才能评论

评论列表(0条)

保存