线性插值法是指使用连接两个已知量的直线来确定在这两个已知量之间的一个未知量的值的方法。
线性插值相比其他插值方式,如抛物线插值,具有简单、方便的特点。线性插值的几何意义即为概述图中利用过A点和B点的直线来近似表示原函数。线性插值可以用来近似代替原函数,也可以用来计算得到查表过程中表中没有的数值。
几何意义:
线性插值的几何意义如右图所示,即为利用过点和的直线来近似原函数。
应用:
1)线性插值在一定允许误差下,可以近似代替原来函数。
2)在查询各种数值表时,可通过线性插值来得到表中没有的数值。
线性插值法计算公式:Y=Y1+(Y2-Y1)×(X-X1)/(X2-X1)。其中Y2>Y1,X2>X>X1。线性插值是指插值函数为一次多项式的插值方式,其在插值节点上的插值误差为零。线性插值相比其他插值方式,如抛物线插值,具有简单、方便的特点。线性插值可以用来近似代替原函数,也可以用来计算得到查表过程中表中没有的数值。
线性插值使用的原因
目前,线性插值算法使用比较广泛。在很多场合我们都可以使用线性插值。其中,最具代表性的使用方法是变量之间的对应关系没有明确的对应关系,无法使用公式来描述两个变量之间的对应关系,在这种情况下使用线性插值是比较好的解决办法。可以在变量的变化区间上取若干个离散的点,以及对应的输出值,然后将对应关系分成若干段,当计算某个输入对应的输出时,可以进行分段线性插值。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)