本文实例讲述了Python数据结构与算法之图的广度优先与深度优先搜索算法。分享给大家供大家参考,具体如下:
根据维基百科的伪代码实现:
广度优先BFS:
使用队列,集合
标记初始结点已被发现,放入队列
每次循环从队列d出一个结点
将该节点的所有相连结点放入队列,并标记已被发现
通过队列,将迷宫路口所有的门打开,从一个门进去继续打开里面的门,然后返回前一个门处
""" procedure BFS(G,v) is let Q be a queue Q.enqueue(v) label v as discovered while Q is not empty v ← Q.dequeue() procedure(v) for all edges from v to w in G.adjacentEdges(v) do if w is not labeled as discovered Q.enqueue(w) label w as discovered"""def procedure(v): passdef BFS(G,v0): """ 广度优先搜索 """ q,s = [],set() q.extend(v0) s.add(v0) while q: # 当队列q非空 v = q.pop(0) procedure(v) for w in G[v]: # 对图G中顶点v的所有邻近点w if w not in s: # 如果顶点 w 没被发现 q.extend(w) s.add(w) # 记录w已被发现
深度优先DFS
使用 栈,集合
初始结点入栈
每轮循环从栈中d出一个结点,并标记已被发现
对每个d出的结点,将其连接的所有结点放到队列中
通过栈的结构,一步步深入挖掘
""""Pseudocode[edit]input: A graph G and a vertex v of GOutput: All vertices reachable from v labeled as discoveredA recursive implementation of DFS:[5]1 procedure DFS(G,v):2 label v as discovered3 for all edges from v to w in G.adjacentEdges(v) do4 if vertex w is not labeled as discovered then5 recursively call DFS(G,w)A non-recursive implementation of DFS:[6]1 procedure DFS-iterative(G,v):2 let S be a stack3 S.push(v)4 while S is not empty5 v = S.pop()6 if v is not labeled as discovered:7 label v as discovered8 for all edges from v to w in G.adjacentEdges(v) do9 S.push(w)"""def DFS(G,v0): S = [] S.append(v0) label = set() while S: v = S.pop() if v not in label: label.add(v) procedure(v) for w in G[v]: S.append(w)
更多关于Python相关内容感兴趣的读者可查看本站专题:《Python数据结构与算法教程》、《Python加密解密算法与技巧总结》、《Python编码 *** 作技巧总结》、《Python函数使用技巧总结》、《Python字符串 *** 作技巧汇总》及《Python入门与进阶经典教程》
希望本文所述对大家Python程序设计有所帮助。
总结以上是内存溢出为你收集整理的Python数据结构与算法之图的广度优先与深度优先搜索算法示例全部内容,希望文章能够帮你解决Python数据结构与算法之图的广度优先与深度优先搜索算法示例所遇到的程序开发问题。
如果觉得内存溢出网站内容还不错,欢迎将内存溢出网站推荐给程序员好友。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)