- 1. python程序完善
- 1.1 多目标的tracking
- 1.2 区分不同object的颜色
- 2. 移植至ROS
- 2.1 读取tracking 资料
- 2.2 提取tracking的目标和颜色
- 2.3 发布函数重写
- 3.效果预览
- 4. 源码
- 4.1 data_utils.py
- 4.2 publish_utils.py
- 4.3 kitti_all.py
本节将采用在jupyter notebook上的方式执行对单张图片上实现对所有object的打标,以及移植到ROS上,通过RVIZ可视化出来
1. python程序完善 1.1 多目标的trackingtracking资料存放在/kitti_folder/tracking中
jupyter工程存放在/test3_autodrive_ws/src/jupyter_prj下的2D_tracking_label.ipynb
数据文件存放在/home/qinsir/kitti_folder/tracking/data_tracking_label_2/training/label_02
下,可以看到是txt文件
boxes = np.array(df[df.frame==frame][["bbox_left", "bbox_top", "bbox_right", "bbox_bottom"]]) #格式转换,第0帧所有的打标框
- 将需要转换的目标提取出来并为一个array
#画出每一个坐标
for box in boxes: #for一个矩阵,它是一行一行读取
# 左上角,右下角,像素都是整数
top_left = int(box[0]), int(box[1])
right_down = int(box[2]), int(box[3])
# 画举行
cv2.rectangle(image, top_left, right_down, (255, 255, 0), 2)
- 对单帧图片所有object进行标注
显示效果如下:
1.2 区分不同object的颜色DETECTION_COLOR_DICT = {'Car':(255, 255, 0), 'Pedestrian':(0, 226, 255), 'Cyclist':(141, 40, 255)}
#为三种车型,分别添加颜色值对应的框
- 设置不同交通工具的不同颜色框的字典(后期调用)
types = np.array(df[df.frame==0]["type"])
- 提取第0帧的df数据中type并转为数组
for typ, box in zip(types, boxes): #for一个矩阵,它是一行一行读取
cv2.rectangle(image, top_left, right_down, DETECTION_COLOR_DICT[typ], 2)
- 合并种类和坐标数组
- 根据每个迭代对象的数据绘制
效果如下:
2. 移植至ROS之前写道,读取image再发布,可以实现查看的效果,这里只需要先读取image,然后进行tracking *** 作,最后再发布image即可,意为不用新的publisher
2.1 读取tracking 资料data_utils.py中:
直接移植jupyter程序中的读取tracking文件的资料:
def read_tracking(path):
#数据获取和归类
df = pd.read_csv(path,header=None, sep=' ')
df.columns = COLUMN_NAMES
#数据处理
df.loc[df.type.isin(['Truck', 'Van', 'Tram']), 'type'] = 'Car' # 将列表中有的这三种车归类为car
df = df[df.type.isin(['Car', 'Pedestrian', 'Cyclist'])] #取出这三个类别,更新df
return df
kitti__all.py中
df_tracking = read_tracking('/home/qinsir/kitti_folder/tracking/data_tracking_label_2/training/label_02/0000.txt')
- 资料的读取:以第0组(厢型车等归类适用的tracking数据)为数据读取
boxes = np.array(df_tracking[df_tracking.frame==frame][["bbox_left", "bbox_top", "bbox_right", "bbox_bottom"]]) #格式转换,第0帧所有的打标框
types = np.array(df_tracking[df_tracking.frame==frame]["type"])
- boxes:从读取资料中提取绘图所需要的四个点的信息,四个点的坐标
- types:从读取资料中读取各帧不同部分的type
原来的publish_camera只有按帧发布照片:
def publish_camera(cam_pub, bridge, image):
cam_pub.publish(bridge.cv2_to_imgmsg(image, 'bgr8'))
现在需要为了入口参数添加2.2的两个变量,因此需要重写为:
def publish_camera(cam_pub, bridge, image, box, typ):
- 多了box(四个点)和typ(颜色)两个参数
for typ, box in zip(types, boxes): #for一个矩阵,它是一行一行读取
# 左上角,右下角,像素都是整数
top_left = int(box[0]), int(box[1])
right_down = int(box[2]), int(box[3])
- 为每一帧的数据迭代
- 找到左上角和右下角的坐标
cv2.rectangle(image, top_left, right_down, DETECTION_COLOR_DICT[typ], 2)
- 按照颜色在图片上画出tracking框
- 最后在主函数中发布就可以啦
- roscore
- rosrun demo1_kitti_pub_photo kitti_all.py
- rviz
add正确的传感器后可以看到
#!/usr/bin/env python3
#coding:utf-8
import os
import cv2
import numpy as np
import pandas as pd
# 提前标注每一行IMU数据的名称
IMU_COLUMN_NAMES = ['lat', 'lon', 'alt', 'roll', 'pitch', 'yaw', 'vn', 've', 'vf', 'vl', 'vu', 'ax', 'ay', 'az', 'af',
'al', 'au', 'wx', 'wy', 'wz', 'wf', 'wl', 'wu', 'posacc', 'velacc', 'navstat', 'numsats', 'posmode',
'velmode', 'orimode']
#设置读取track文件的资料的title
TRACK_COLUMN_NAMES = ['frame', 'track_id', 'type', 'truncated', 'occluded', 'alpha', 'bbox_left', 'bbox_top',
'bbox_right', 'bbox_bottom', 'height', 'width', 'length', 'pos_x', 'pos_y', 'pos_z', 'rot_y']
def read_camera(path):
return cv2.imread(path)
def read_point_cloud(path):
return np.fromfile(path, dtype=np.float32).reshape(-1, 4)
def read_imu(path):
df = pd.read_csv(path, header=None, sep=" ")
df.columns = IMU_COLUMN_NAMES
return df
def read_tracking(path):
#数据获取和归类
df = pd.read_csv(path,header=None, sep=' ')
df.columns = TRACK_COLUMN_NAMES
#数据处理
df.loc[df.type.isin(['Truck', 'Van', 'Tram']), 'type'] = 'Car' # 将列表中有的这三种车归类为car
df = df[df.type.isin(['Car', 'Pedestrian', 'Cyclist'])] #取出这三个类别,更新df
return df
4.2 publish_utils.py
#!/usr/bin/env python3
#coding:utf-8
import rospy
from std_msgs.msg import Header
from sensor_msgs.msg import Image, PointCloud2, Imu, NavSatFix
from visualization_msgs.msg import Marker, MarkerArray
import sensor_msgs.point_cloud2 as pcl2
from geometry_msgs.msg import Point
from cv_bridge import CvBridge
import numpy as np
import tf
import cv2
FRAME_ID = "map"
DETECTION_COLOR_DICT = {'Car':(255, 255, 0), 'Pedestrian':(0, 226, 255), 'Cyclist':(141, 40, 255)}
#为三种车型,分别添加颜色值对应的框
'''
def publish_camera(cam_pub, bridge, image):
cam_pub.publish(bridge.cv2_to_imgmsg(image, 'bgr8'))
'''
def publish_camera(cam_pub, bridge, image, boxes, types):
#画出每一个坐标
for typ, box in zip(types, boxes): #for一个矩阵,它是一行一行读取
# 左上角,右下角,像素都是整数
top_left = int(box[0]), int(box[1])
right_down = int(box[2]), int(box[3])
# 画矩形
cv2.rectangle(image, top_left, right_down, DETECTION_COLOR_DICT[typ], 2)
cam_pub.publish(bridge.cv2_to_imgmsg(image, 'bgr8'))
def publish_point_cloud(pcl_pub, point_cloud):
header = Header()
header.frame_id = FRAME_ID
header.stamp = rospy.Time.now()
pcl_pub.publish(pcl2.create_cloud_xyz32(header, point_cloud[:, :3]))
def publish_ego_car(ego_car_pub):
'publish left and right 45 degree FOV and ego car model mesh'
#header部分
marker = Marker()
marker.header.frame_id = FRAME_ID
marker.header.stamp = rospy.Time.now()
# marker的id
marker.id = 0
marker.action = Marker.ADD # 加入一个marker
marker.lifetime = rospy.Duration() # 生存时间,()中无参数永远出现
marker.type = Marker.LINE_STRIP #marker 的type,有很多种,这里选择线条
marker.color.r = 0.0
marker.color.g = 1.0
marker.color.b = 0.0 #这条线的颜色
marker.color.a = 1.0 #透明度 1不透明
marker.scale.x = 0.2 #大小,粗细
#设定marker中的资料
marker.points = []
# 两条线,三个点即可
#原点是0,0,0, 看左上角和右上角的数据要看kitti的设定,看坐标
marker.points.append(Point(10, -10, 0))
marker.points.append(Point(0, 0, 0))
marker.points.append(Point(10, 10, 0))
ego_car_pub.publish(marker) #设定完毕,发布
def publish_car_model(model):
#header部分
mesh_marker = Marker()
mesh_marker.header.frame_id = FRAME_ID
mesh_marker.header.stamp = rospy.Time.now()
# marker的id
mesh_marker.id = -1
mesh_marker.lifetime = rospy.Duration() # 生存时间,()中无参数永远出现
mesh_marker.type = Marker.MESH_RESOURCE #marker 的type,有很多种,这里选择mesh
mesh_marker.mesh_resource = "package://demo1_kitti_pub_photo/mesh/car_model/car.DAE"
#平移量设置
mesh_marker.pose.position.x = 0.0
mesh_marker.pose.position.y = 0.0
#以为0,0,0 是velodyne的坐标(车顶),这里坐标是车底,所以是负数
mesh_marker.pose.position.z = -1.73
#旋转量设定
q = tf.transformations.quaternion_from_euler(np.pi/2, 0, np.pi/2)
# 这里的参数和下载模型的预设角度有关,旋转关系,根据显示效果而调整,转成四元数q
#x轴旋转
mesh_marker.pose.orientation.x = q[0]
mesh_marker.pose.orientation.y = q[1]
mesh_marker.pose.orientation.z = q[2]
mesh_marker.pose.orientation.w = q[3]
#颜色设定(白色)
mesh_marker.color.r = 1.0
mesh_marker.color.g = 1.0
mesh_marker.color.b = 1.0
mesh_marker.color.a = 1.0
#设置体积: x,y,z方向的膨胀程度
mesh_marker.scale.x = 0.4
mesh_marker.scale.y = 0.4
mesh_marker.scale.z = 0.4
model.publish(mesh_marker) #设定完毕,发布
def publish_two_marker(kitti_two_marker):
#建立markerarray
markerarray = MarkerArray()
# 绿线设定
marker = Marker()
marker.header.frame_id = FRAME_ID
marker.header.stamp = rospy.Time.now()
# marker的id
marker.id = 0
marker.action = Marker.ADD # 加入一个marker
marker.lifetime = rospy.Duration() # 生存时间,()中无参数永远出现
marker.type = Marker.LINE_STRIP #marker 的type,有很多种,这里选择线条
marker.color.r = 0.0
marker.color.g = 1.0
marker.color.b = 0.0 #这条线的颜色
marker.color.a = 1.0 #透明度 1不透明
marker.scale.x = 0.2 #大小,粗细
#设定marker中的资料
marker.points = []
# 两条线,三个点即可
#原点是0,0,0, 看左上角和右上角的数据要看kitti的设定,看坐标
marker.points.append(Point(10, -10, 0))
marker.points.append(Point(0, 0, 0))
marker.points.append(Point(10, 10, 0))
#加入第一个
markerarray.markers.append(marker)
mesh_marker = Marker()
mesh_marker.header.frame_id = FRAME_ID
mesh_marker.header.stamp = rospy.Time.now()
# marker的id
mesh_marker.id = -1
mesh_marker.lifetime = rospy.Duration() # 生存时间,()中无参数永远出现
mesh_marker.type = Marker.MESH_RESOURCE #marker 的type,有很多种,这里选择mesh
mesh_marker.mesh_resource = "package://demo1_kitti_pub_photo/mesh/car_model/car.DAE"
#平移量设置
mesh_marker.pose.position.x = 0.0
mesh_marker.pose.position.y = 0.0
#以为0,0,0 是velodyne的坐标(车顶),这里坐标是车底,所以是负数
mesh_marker.pose.position.z = -1.73
#旋转量设定
q = tf.transformations.quaternion_from_euler(np.pi/2, 0, np.pi/2)
# 这里的参数和下载模型的预设角度有关,旋转关系,根据显示效果而调整,转成四元数q
#x轴旋转
mesh_marker.pose.orientation.x = q[0]
mesh_marker.pose.orientation.y = q[1]
mesh_marker.pose.orientation.z = q[2]
mesh_marker.pose.orientation.w = q[3]
#颜色设定(白色)
mesh_marker.color.r = 1.0
mesh_marker.color.g = 1.0
mesh_marker.color.b = 1.0
mesh_marker.color.a = 1.0
#设置体积: x,y,z方向的膨胀程度
mesh_marker.scale.x = 0.4
mesh_marker.scale.y = 0.4
mesh_marker.scale.z = 0.4
# 加入第二个:车子模型
markerarray.markers.append(mesh_marker)
#发布
kitti_two_marker.publish(markerarray)
def publish_imu(imu_pub, imu_data):
# 消息建立
imu = Imu()
#头填充
imu.header.frame_id = FRAME_ID
imu.header.stamp = rospy.Time.now()
#旋转角度
q = tf.transformations.quaternion_from_euler(float(imu_data.roll), float(imu_data.pitch), float(imu_data.yaw))
# 将roll, pitch, yaw转成可被电脑识别的四元数q,并设定出去
imu.orientation.x = q[0]
imu.orientation.y = q[1]
imu.orientation.z = q[2]
imu.orientation.w = q[3]
#线性加速度
imu.linear_acceleration.x = imu_data.af
imu.linear_acceleration.y = imu_data.al
imu.linear_acceleration.z = imu_data.au
#角速度
imu.angular_velocity.x = imu_data.wf
imu.angular_velocity.y = imu_data.wl
imu.angular_velocity.z = imu_data.wu
#发布
imu_pub.publish(imu)
def publish_gps(gps_pub, imu_data):
gps = NavSatFix()
#头填充
gps.header.frame_id = FRAME_ID
gps.header.stamp = rospy.Time.now()
#维度, 经度 和海拔
gps.latitude = imu_data.lat
gps.longitude = imu_data.lon
gps.altitude = imu_data.al
gps_pub.publish(gps)
4.3 kitti_all.py
#!/usr/bin/env python3
#coding:utf-8
from data_utils import *
from publish_utils import *
DATA_PATH = '/home/qinsir/kitti_folder/2011_09_26/2011_09_26_drive_0005_sync/'
if __name__ == '__main__':
frame = 0
rospy.init_node('kitti_node', anonymous=True) #默认节点可以重名
cam_pub = rospy.Publisher('kitti_cam', Image, queue_size=10)
pcl_pub = rospy.Publisher("kitti_point_cloud", PointCloud2, queue_size=10)
#ego_pub = rospy.Publisher('kitti_ego_car', Marker, queue_size=10)
#model_pub = rospy.Publisher("kitti_car_model", Marker, queue_size=10)
two_marker_pub = rospy.Publisher("kitti_two_mark", MarkerArray, queue_size=10)
imu_pub = rospy.Publisher("kitti_imu", Imu, queue_size=10) #IMU发布者
gps_pub = rospy.Publisher("kitti_gps", NavSatFix, queue_size=10)
bridge = CvBridge() #opencv支持的图片和ROS可以读取的图片之间转换的桥梁
rate = rospy.Rate(10)
#以第0组(厢型车等归类适用的tracking数据)为数据读取
df_tracking = read_tracking('/home/qinsir/kitti_folder/tracking/data_tracking_label_2/training/label_02/0000.txt')
while not rospy.is_shutdown():
boxes = np.array(df_tracking[df_tracking.frame==frame][["bbox_left", "bbox_top", "bbox_right", "bbox_bottom"]]) #格式转换,第0帧所有的打标框
types = np.array(df_tracking[df_tracking.frame==frame]["type"])
#使用OS,路径串接,%010d,这个字串有10个数字(比如0000000001).png
img = read_camera(os.path.join(DATA_PATH, 'image_02/data/%010d.png'%frame))
point_cloud = read_point_cloud(os.path.join(DATA_PATH, "velodyne_points/data/%010d.bin"%frame))
imu_data = read_imu(os.path.join(DATA_PATH, "oxts/data/%010d.txt"%frame))
publish_camera(cam_pub, bridge, img, boxes, types)
#publish_camera(cam_pub, bridge, img)
publish_point_cloud(pcl_pub, point_cloud)
#publish_ego_car(ego_pub)
#publish_car_model(model_pub)
publish_two_marker(two_marker_pub)
publish_imu(imu_pub, imu_data)
publish_gps(gps_pub, imu_data)
rospy.loginfo('new file publish')
rate.sleep()
frame += 1
frame %= 154
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)