导入函数
#导入相关函数
from keras.engine.input_layer import Input
from keras.backend import reshape
from tensorflow.keras import backend as K
实现过程
def main():
img_inputs = keras.Input(shape=(32, 32, 16),dtype='float32')
x=DepthwiseConv2D(padding='same',kernel_size=3,use_bias=True)(img_inputs)
#用函数keras.backend中的方法shape获取尺寸
#b, h, w, c=(None,32,32,16),tensor类型
b, h, w, c=K.shape(x)
#用一般的shape获取尺寸
#samples, rows, cols, dim = samples,32,32,16, int类型
samples, rows, cols, dim=x.shape
x=reshape(x,(b,h,cols,dim))
print(x.shape) #结果为(None, None, 32, 16)
x=reshape(x,(b,rows,cols,dim))
print(x.shape)#结果为(None, 32, 32, 16)
x=reshape(x,(b,rows*cols,dim))
print(x.shape)#结果为(None, 1024, 16)
x=reshape(x,(b,rows,cols,dim))
x=tf.transpose(x, perm=[0,3,1,2])
print(x.shape)#结果为(None, 16, 32, 32)
x=reshape(x,(b,8,2,rows,cols))
print(x.shape)#结果为(None, 8, 2, 32, 32)
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)