php redis Hash 怎么通过 一个指定的value 查找到对应的 key 值

php redis Hash 怎么通过 一个指定的value 查找到对应的 key 值,第1张

phpredis是php的一个扩展,效率是相当高有链表排序功能,对创建内存级的模块业务关系很有用;

如果对系统存储使用的数据以两种角度分类,一种是按数据的大小划分,分成大数据和小数据,另一种是按数据的冷热程度划分,分成冷数据和热数据,热数据是指读或写比较频繁的数据,反之则是冷数据。

可以举一些具体的例子来说明数据的大小和冷热属性。比如网站总的注册用户数,这明显是一个小而热的数据,小是因为这个数据只有一个值,热是因为注册用户数随时间变化很频繁。再比如,用户最新访问时间数据,这是一个量比较大,冷热不均的数据,大是数据的粒度是用户级别,每一个用户都有数据,如果有一千万用户,就意味着有一千万的数据,冷热不均是因为活跃用户的最新访问时间变化很频繁,但是可能有很大一部非活跃用户访问时间长时间不会发生变化。

大体而言,Redis 最适合处理的是小而热,而且是写频繁,或者读写都比较频繁的热数据。对于大而热的数据,如果其它方式很难解决问题,也可以考虑使用 Redis 解决,但是一定要非常谨慎,防止数据无限膨胀。原因如下:

首先,对于冷数据,无论大小,都不建议放在 Redis 中。Redis 数据要全部放在内存中,资源宝贵,把冷数据放在其中实在是一种浪费,冷数据放在普通的存储比如关系数据库中就好了。

其次,对于热数据,尤其是写频繁的热数据,如果量比较小,是最适合放到 Redis 中的。比如上面提到的网站总的注册用户数,就是典型的 Redis 用做计数器的例子。再比如论坛最新发表列表,最新报名列表,可以控制数量在几百到一千的规模,也是典型的 redis 做最新列表的使用方式。

另外,对于量比较大的热数据(或者冷热不均数据),使用 Redis 时一定要比较谨慎。这种类型数据很容易引起数据膨胀,导致 Redis 消耗内存巨大,让系统难以承受。薄荷的一个惨痛教训是把用户关注(以及被关注)数据放在 Redis 中,这是一种数据量极大,冷热很不均衡的数据,在几百万的用户级别就占用了近 10 GB左右内存,让 Redis 变得难以应付。应对这种类型的数据,可以用普通存储 + 缓存的方式。

如果用对了地方,比如在小而热的数据情形,Redis 表现很棒,如果用错了地方,Redis 也会带来昂贵的代价,所以使用时务必谨慎。

是哈希表大小的两倍。

在返回值里,紧跟每个字段名(fieldname)之后是字段的值(value),所以返回值的长度是哈希表大小的两倍。

Redishash是一个string类型的field(字段)和value(值)的映射表,hash特别适合用于存储对象。其中value相当于一个map集合,即key-map。

以上就是关于php redis Hash 怎么通过 一个指定的value 查找到对应的 key 值全部的内容,包括:php redis Hash 怎么通过 一个指定的value 查找到对应的 key 值、redishash命令返回字段值的长度、等相关内容解答,如果想了解更多相关内容,可以关注我们,你们的支持是我们更新的动力!

欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/web/9773216.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-05-01
下一篇 2023-05-01

发表评论

登录后才能评论

评论列表(0条)

保存