什么是逆矩阵,逆矩阵怎么求?

什么是逆矩阵,逆矩阵怎么求?,第1张

对角矩阵中,如果对角线上的元素都不为0,那么这个对角阵是可逆的。

其逆矩阵也是一个对角阵,对角线上的元素恰好是对应的原矩阵对角线上元素的倒数。
可以利用逆矩阵的初等变换法证明,所以,逆矩阵如下:

扩展资料:

在数学中,矩阵(Matrix)是一个按照长方阵列排列的复数或实数集合 ,最早来自于方程组的系数及常数所构成的方阵。这一概念由19世纪英国数学家凯利首先提出。

矩阵是高等代数学中的常见工具,也常见于统计分析等应用数学学科中。 在物理学中,矩阵于电路学、力学、光学和量子物理中都有应用;计算机科学中,三维动画制作也需要用到矩阵。 矩阵的运算是数值分析领域的重要问题。将矩阵分解为简单矩阵的组合可以在理论和实际应用上简化矩阵的运算。

对一些应用广泛而形式特殊的矩阵,例如稀疏矩阵和准对角矩阵,有特定的快速运算算法。关于矩阵相关理论的发展和应用,请参考矩阵理论。在天体物理、量子力学等领域,也会出现无穷维的矩阵,是矩阵的一种推广。

数值分析的主要分支致力于开发矩阵计算的有效算法,这是一个几个世纪以来的课题,是一个不断扩大的研究领域。 矩阵分解方法简化了理论和实际的计算。 针对特定矩阵结构(如稀疏矩阵和近角矩阵)定制的算法在有限元方法和其他计算中加快了计算。 无限矩阵发生在行星理论和原子理论中。 无限矩阵的一个简单例子是代表一个函数的泰勒级数的导数算子的矩阵。

定义

由 m × n 个数aij排成的m行n列的数表称为m行n列的矩阵,简称m × n矩阵。记作:

这m×n 个数称为矩阵A的元素,简称为元,数aij位于矩阵A的第i行第j列,称为矩阵A的(i,j)元,以数 aij为(i,j)元的矩阵可记为(aij)或(aij)m × n,m×n矩阵A也记作Amn。

元素是实数的矩阵称为实矩阵,元素是复数的矩阵称为复矩阵。而行数与列数都等于n的矩阵称为n阶矩阵或n阶方阵 。

参考资料:百度百科-矩阵

运用初等行变换法。具体如下:

将一n阶可逆矩阵A和n阶单位矩阵I写成一个nX2n的矩阵B=[A,I] 对B施行初等行变换,即对A与I进行完全相同的若干初等行变换,目标是把A化为单位矩阵。当A化为单位矩阵I的同时,B的右一半矩阵同时化为了A的逆矩阵。

如求

的逆矩阵

故A可逆并且,由右一半可得逆矩阵A^-1=

扩展资料:

逆矩阵的性质:

1、可逆矩阵一定是方阵。

2、如果矩阵A是可逆的,其逆矩阵是唯一的。

3、A的逆矩阵的逆矩阵还是A。记作(A-1)-1=A。

4、可逆矩阵A的转置矩阵AT也可逆,并且(AT)-1=(A-1)T (转置的逆等于逆的转置)。

5、若矩阵A可逆,则矩阵A满足消去律。即AB=O(或BA=O),则B=O,AB=AC(或BA=CA),则B=C。

6、两个可逆矩阵的乘积依然可逆。

7、矩阵可逆当且仅当它是满秩矩阵。

在线性代数中逆矩阵是按其伴随矩阵定义的,若则方阵可逆,且,其中为的伴随矩阵。要计算个阶的列式才能得到一个伴随矩阵,在数值计算中因其计算工作量大而不被采用。通常对做行的初等的效换,在将化成的过程中得到。在数值计算中,这仍然是一种行之有效的方法。
由逆矩阵的定义 令,有
化为个方程组
j
是第个分量为1,其余分量为0的维向量。或记为:。
用直接法或迭代法算出也就完成了逆矩阵计算。
如果依次对用高斯若尔当消元法,组合起来看有(当然也能组合起来做):
这正是在线性代数中用初等变换计算逆矩阵的方法。
由此可见,计算一个阶逆矩阵的工作量相当于解个线性方程组。在数值计算中常常将计算矩阵逆的问题转化为解线性方程组的问题。
例如,已知方阵和向量有迭代关系式,在计算中不是先算出,再作与的乘积得到;而将作为线性方程组系数矩阵,求解方程组作为常驻数项解出。

将一n阶可逆矩阵A和n阶单位矩阵I写成一个nX2n的矩阵

对B施行初等行变换,即对A与I进行完全相同的若百干初等行变换,目标是把A化为单位矩阵。当A化为单位矩阵I的同时,B的右一半矩阵同时化为了A的逆矩阵。

如求

的逆矩阵A-1。

故A可逆并且,由右一半可得逆矩阵A-1=

可逆矩阵的性质定理

1、可逆矩阵一定是方阵。

2、如果矩阵A是可逆的,其逆矩阵是唯一回的。

3、A的逆矩阵的逆矩阵还是A。记作(A-1)-1=A。

4、可逆矩阵A的转置矩阵AT也可逆,并且(AT)-1=(A-1)T (转置的逆等于逆的转置)

5、若矩阵A可逆,则矩阵A满足消去律。即AB=O(或BA=O),则B=O,AB=AC(或BA=CA),则B=C。

6、两个答可逆矩阵的乘积依然可逆。

7、矩阵可逆当且仅当它是满秩矩阵。

一个矩阵的逆矩阵的算法是A逆乘以(AE)=(EA逆)初等行变换就是在矩阵的左边乘以A的逆矩阵得到的。

逆矩阵(外文名:inverse matrix)是一个数学概念,主要用于描述两个矩阵之间的可逆关系。设A是数域上的一个n阶矩阵,若在相同数域上存在另一个n阶矩阵B,使得:AB=BA=E,其中E为单位矩阵,则称B是A的逆矩阵。

矩阵指在数学中,按照长方阵列排列的复数或实数集合,最早来自于方程组的系数及常数所构成的方阵,由19世纪英国数学家凯利首先提出。它是高等代数学中的常见工具,其运算是数值分析领域的重要问题。将矩阵分解为简单矩阵的组合,可以在理论和实际应用上简化矩阵的运算。

矩阵的历史:

这一概念由19世纪英国数学家凯利首先提出。作为解决线性方程的工具,矩阵也有不短的历史。成书最迟在东汉前期的《九章算术》中,用分离系数法表示线性方程组,得到了其增广矩阵。在消元过程中,使用的把某行乘以某一非零实数、从某行中减去另一行等运算技巧,相当于矩阵的初等变换。

但那时并没有现今理解的矩阵概念,虽然它与现有的矩阵形式上相同,但在当时只是作为线性方程组的标准表示与处理方式。矩阵正式作为数学中的研究对象出现,则是在行列式的研究发展起来后。逻辑上,矩阵的概念先于行列式,但在实际的历史上则恰好相反。

矩阵的逆等于伴随矩阵除以矩阵的行列式,所以现在只要求原矩阵的行列式即可。

A^=A^(-1)|A|,

两边同时取行列式得

|A^|=|A|^2 (因为是三阶矩阵)

又|A^|=4,|A|>0,所以|A|=2

所以A^(-1)=A^()/2,就是伴随矩阵除以2。

特殊求法:

(1)当矩阵是大于等于二阶时 :

主对角元素是将原矩阵该元素所在行列去掉再求行列式,非主对角元素是原矩阵该元素的共轭位置的元素去掉所在行列求行列式乘以  , x,y为该元素的共轭位置的元素的行和列的序号,序号从1开始。主对角元素实际上是非主对角元素的特殊情况,因为x=y,所以  ,一直是正数,没必要考虑主对角元素的符号问题。

(2)当矩阵的阶数等于一阶时,伴随矩阵为一阶单位方阵。

(3)二阶矩阵的求法口诀:主对角线元素互换,副对角线元素加负号。

矩阵性质

矩阵是线性代数的主要内容,很多实际问题用矩阵的思想去解既简单又快捷。逆矩阵又是矩阵理论的很重要的内容,逆矩阵的求法自然也就成为线性代数研究的主要内容之一。

设A是数域上的一个n阶方阵,若在相同数域上存在另一个n阶矩B,使得: AB=BA=E。 则我们称B是A的逆矩阵,而A则被称为可逆矩阵。其中,E为单位矩阵。

典型的矩阵求逆方法有:利用定义求逆矩阵、初等变换法、伴随阵法、恒等变形法等。

用分块矩阵、公式法、设逆矩阵都可以解决。

分别求两个对角的二街矩阵逆,然后直接代入。

1、用A-=A/|A|

2、初等行变换求逆阵

设A是数域上的一个n阶方阵,若在相同数域上存在另一个n阶矩阵B,使得: AB=BA=E。 则我们称B是A的逆矩阵,而A则被称为可逆矩阵。

注:E为单位矩阵。

参考资料:

百度百科-逆矩阵


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/yw/10528014.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-05-09
下一篇 2023-05-09

发表评论

登录后才能评论

评论列表(0条)

保存