等价矩阵的充要条件

等价矩阵的充要条件,第1张

等价矩阵的充要条件为:同型矩阵且秩相等。

矩阵等价的充要条件为:同型矩阵且秩相等。相似必定等价,等价不一定相似。两矩阵等价,秩相等,列向量,行向量极大线性无关组数相等。若存在可逆矩阵P、Q,使PAQ=B,则A与B等价。所谓矩阵A与矩阵B等价,即A经过初等变换可得到B。

1、等价矩阵的性质。

矩阵A和A等价(反身性);

矩阵A和B等价,那么B和A也等价(等价性);

矩阵A和B等价,矩阵B和C等价,那么A和C等价(传递性);

矩阵A和B等价,那么IAI=KIBI。(K为非零常数);

具有行等价关系的矩阵所对应的线性方程组有相同的解。

对于相同大小的两个矩形矩阵,它们的等价性也可以通过以下条件来表征:矩阵可以通过基本行和列 *** 作的而彼此变换。当且仅当它们具有相同的秩时,两个矩阵是等价的。

2、两个矩阵等价可以推出。

根据矩阵等价的充要条件,两个矩阵有相同的秩,可知n阶方阵A与单位方阵E等价的充要条件是:A秩=E秩=n。

也就是说A可以通过有限次初等变换得到E,而|E|=1. 由行列式初等变换的原理,可以知道,必存在一个非零的数k,使得|A|=k|E|不等于0,因此|A|不等于0是A和E等价的充要条件。

3、由两个矩阵等价推出。

它们有相同的行数和列数;

它们的秩相同;

它们与同一标准型矩阵等价;

如果它们是同阶方阵,则它们所对应的行列式同时等于0或同时不等于0;

可以通过有限次初等变换,由其中一个矩阵得到另外一个矩阵。

等价矩阵的证明:

a1,a2,....an,线性无关,而a1,a2,....an,b,r线性相关,所以有x1a1+x2a2+....xnan+xb+yr=0,若y=0,则x1a1+x2a2+....xnan+xb=0,说明a1,a2,...an,b线性相关,同理x=0,可得a1,a2,....an,r线性相关。

若x,y都不为零,两边除以x可得-b=x1/x)a1+(x2/x)a2+...+(xn/x)an+(y/x)r,这表示b可以用a1,a2,....an,r.表示。若除以y可证明r可以用a1,a2,....an,b表示。这就说明a1,a2,....an,b与a1,a2,....an,r等价.综合可得命题得证。

当A和B为同型矩阵,且r(A)=r(B)时,A,B一定等价。

对的。矩阵等价的定义:若存在可逆矩阵P、Q,使PAQ=B,则A与B等价。所谓矩阵A与矩阵B等价,即A经过初等变换可得到B。充分性:经过初等变换,秩是不改变的,即R(A)=R(PAQ)=R(B)。必要性:设R(A)=R(B)=m,则A经过初等变换一定能化成最简型矩阵,这个最简型矩阵记作C。 C的秩为m。同样,B矩阵经过初等变换能化成一个最简型矩阵,因为B的秩是m,所以B化成的最简型也是C。也就是说,A与C等价,B与C等价,所以,A与B也等价。


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/zaji/5854831.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-02-21
下一篇 2023-02-21

发表评论

登录后才能评论

评论列表(0条)

保存