直线的极坐标方程是:对于不经过极点的直线y=kx+b,代入x=ρcosθ,y=ρsinθ,化简即可。
极坐标系(polar coordinates)是指在平面内由极点、极轴和极径组成的坐标系。在平面上取定一点O,称为极点。从O出发引一条射线Ox,称为极轴。
再取定一个单位长度,通常规定角度取逆时针方向为正。这样,平面上任一点P的位置就可以用线段OP的长度ρ以及从Ox到OP的角度θ来确定,有序数对(ρ,θ)就称为P点的极坐标,记为P(ρ,θ);ρ称为P点的极径,θ称为P点的极角。
相关内容解释:
在数学中,极坐标系是一个二维坐标系统。该坐标系统中任意位置可由一个夹角和一段相对原点—极点的距离来表示。极坐标系的应用领域十分广泛,包括数学、物理、工程、航海、航空以及机器人领域。
在两点间的关系用夹角和距离很容易表示时,极坐标系便显得尤为有用;而在平面直角坐标系中,这样的关系就只能使用三角函数来表示。对于很多类型的曲线,极坐标方程是最简单的表达形式,甚至对于某些曲线来说,只有极坐标方程能够表示。
θ=常数在极坐标中表示以极点为始点,与极轴的正向的夹角为θ的射线,所以在极坐标系中直线的方程是θ=k与θ=π-k,k为直线的倾。
圆的极坐标公式:ρ²=x²+y²,x=ρcosθ,y=ρsinθ tanθ=y/x,(x不为0)
1、如果半径为R的圆的圆心在直角坐标的x=R,y=0点,即(R,0),也就是极坐标的ρ=R,θ=0,即(R,0)点:那么该圆的极坐标方程为:ρ=2Rcosθ。
2、如果圆心在x=R,y=R,或在极坐标的(√2 R,π/4),该圆的极坐标方程为:ρ^2-2Rρ(sinθ+cosθ)+R^2=0。
3、如果圆心在x=0,y=R,该圆的极坐标方程为:ρ=2Rsinθ。
4、圆心在极坐标原点:ρ=R(θ任意)。
拓展内容:
在数学中,极坐标系是一个二维坐标系统。该坐标系统中任意位置可由一个夹角和一段相对原点—极点的距离来表示。
极坐标系的应用领域十分广泛,包括数学、物理、工程、航海、航空以及机器人领域。在两点间的关系用夹角和距离很容易表示时,极坐标系便显得尤为有用;而在平面直角坐标系中,这样的关系就只能使用三角函数来表示。
对于很多类型的曲线,极坐标方程是最简单的表达形式,甚至对于某些曲线来说,只有极坐标方程能够表示。
参考资料:
y=tanx直接用y=rsinθ,x=rcosθ代换
极坐标只能用隐函数表示rsinθ=tan(rcosθ),不能表示为简单的形式
其实用极坐标是因为在某些条件下极坐标的表示形式和计算比直角坐标简单,不是什么函数都适合用极坐标表示
具体回答如图:
极坐标方程:
水平方向: ρ=a(1-cosθ) 或 ρ=a(1+cosθ) (a>0)
垂直方向: ρ=a(1-sinθ) 或 ρ=a(1+sinθ) (a>0)
扩展资料:
心形线的平面直角坐标系方程表达式分别为 x^2+y^2+ax=asqrt(x^2+y^2) 和 x^2+y^2-ax=asqrt(x^2+y^2)
极坐标系下绘制 r = Arccos(sinθ),我们也会得的一个漂亮的心形线。更为复杂的心形线:数学爱好者创作的平面直角坐标系下的心形线,由两个函数表达式构成,但在利用几何画板作图时请务必将角度单位从默认的度改为弧度。
通过椭圆方程旋转45°,基础为平面直角坐标系,不同于笛卡尔的极坐标系;轴方向取绝对值,成为偶函数;新的偶函数为闭合心形线。
——心形线
设
圆心M(ρ',θ') 半径r 极点O
圆上任意一点P(ρ,θ)
ΔOPM中
由余弦定理
|OM|^2+|OP|^2-2|OM||OP|cos(θ-θ')=|PM|^2
(ρ')^2+ρ^2-2ρρ'cos(θ-θ')=r^2
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)