连续函数四大基本性质为有界性、单调性、奇偶性、连续性。
1、有界性:函数的有界性,是一个数学术语。设函数f(x)的定义域为D,在集合D上有定义。如果存在数K1,使得f(x)≤K1对任意x∈D都成立,则称函数f(x)在D上有上界。反之,如果存在数字K2,使得f(x)≥K2对任意x∈D都成立,则称函数f(x)在D上有下界。
2、单调性:函数的单调性(monotonicity)也叫函数的增减性。当函数 f(x)的自变量在其定义区间内增大(或减小)时,函数值f(x)也随着增大(或减小),则称该函数为在该区间上具有单调性。
3、奇偶性:一奇一偶地排列叫做奇偶性。一般地,如果对于函数定义域内的任意一个x,都有f(-x)=- f(x),那么函数f(x)就叫做奇函数。 如果对于函数定义域内的任意一个x,都有f(-x)= f(x),那么函数f(x)就叫做偶函数。
4、连续性:函数y= f(x),当自变量x的变化很小时,引起的因变量y的变化也很小。例如,只要时间变化很小,气温的变化也是很小的。又如,自由落体的位移随时间变化,只要时间变化足够短,位移的变化也是很小的。 f(x)=f(x0),称函数f在x0点连续。
有界性:闭区间上的连续函数在该区间上一定有界。最值性:闭区间上的连续函数在该区间上一定能取得最大值和最小值。介值性:若f(a)=A,f(b)=B,且A≠B。则对A、B之间的任意实数C,在开区间(a,b)上至少有一点c,使f(c)=C。
连续函数有何性质
有界性
所谓有界是指,存在一个正数M,使得对于任意x∈[a,b],都有|f(x)|≤M。
证明:利用致密性定理:有界的数列必有收敛子数列。
最值性
所谓最大值是指,[a,b]上存在一个点x0,使得对任意x∈[a,b],都有f(x)≤f(x0),则称f(x0)为f(x)在[a,b]上的最大值。最小值可以同样作定义,只需把上面的不等号反向即可。
介值性
这个性质又被称作介值定理,其包含了两种特殊情况:
(1)零点定理。也就是当f(x)在两端点处的函数值A、B异号时(此时有0在A和B之间),在开区间(a,b)上必存在至少一点ξ,使f(ξ)=0。
(2)闭区间上的连续函数在该区间上必定取得最大值和最小值之间的一切数值。
一致连续性
闭区间上的连续函数在该区间上一致连续。
所谓一致连续是指,对任意ε>0(无论其多么小),总存在正数δ,当区间I上任意两个数x1、x2满足|x1-x2|<δ时,有|f(x1)-f(x2)|<ε,就称f(x)在I上是一致连续的。
函数的连续性对于连续性,在自然界中有许多现象,如气温的变化,植物的生长等都是连续地变化着的。这种现象在函数关系上的反映,就是函数的连续性。简单地说,如果一个函数的图像你可以一笔画出来,整个过程不用抬笔,那么这个函数就是连续的。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)