如果D(x)是指狄利克雷函数
即D(x)=0(x是无理数);1(x是有理数)这个函数的话。
那么f(x)=x^n+1D(x)还是在任何点,含x=0点都不连续,所以也都不可导啊。
不过如果设计这样一个函数g(x)=(x^n)D(x)(n>1)的话。
则这个函数在x=0点连续(也只在这点连续,任何x≠0的点都不连续)
g(x)在x=0点有一阶导数。
估计你的f(x)是[x^(n+1)]D(x)吧?不是(x^n)+[1的(x)]吧?
如果是[x^(n+1)]D(x),那就和我上面说的g(x)=(x^n)D(x)(n>1)一个意思。
首先,这样的函数一定是存在的。因为大多数的函数是“几乎处处不可导”。可导是一个非常优秀的性质,更不要说是无穷可导。
写成傅立叶级数要满足狄利克雷条件就行了吧。和无穷可导貌似也扯不上什么关系。甚至周期方波信号,都不满足狄利克雷条件,我们还是可以写成傅立叶级数形式,因为狄利克雷条件是个充分条件。
总而言之我就一句话:这样的函数肯定是存在的,而且求傅立叶级数所要求的条件要比你给的条件宽松的多。
错的。
多元函数中,函数f(x,y)在某点是否连续与f在该点处两个偏导数是否都存在两者没有关系!例如f=|x|+|y|;f=xy/(x^2+y^2)。
偏导数f'x(x0,y0)表示固定面上一点对x轴的切线斜率;偏导数f'y(x0,y0)表示固定面上一点对y轴的切线斜率。
可积函数的有界
任何一个可积函数一定是有界的,但是需要注意的是,有界函数不一定可积。在其定义域上的每一点都不连续的函数。狄利克雷函数是处处不连续函数的一个例子。
若f(x)为一函数,定义域和值域都是实数,若针对每一个x,都存在ε>0 ,使得针对每一个δ>0,都可以找到y,使下式成立,则f(x)为处处不连续函数:0< |x−y|<δ 且|f(x)−f(y)|≥ε。
它是数学的一个基础学科,内容主要包括极限、微分学、积分学及其应用。微分学包括求导数的运算,是一套关于变化率的理论。
它使得函数、速度、加速度和曲线的斜率等均可用一套通用的符号进行讨论。积分学,包括求积分的运算,为定义和计算面积、体积等提供一套通用的方法。
微积分历史
从微积分成为一门学科来说,是在17世纪,但是积分的思想早在古代就已经产生了。
公元前7世纪,古希腊科学家、哲学家泰勒斯就对球的面积、体积、与长度等问题的研究就含有微积分思想。
公元前3世纪,古希腊的数学家、力学家阿基米德(公元前287~前212)的著作《圆的测量》和《论球与圆柱》中就已含有积分学的萌芽,他在研究解决抛物线下的弓形面积、球和球冠面积、螺线下的面积和旋转双曲线所得的体积的问题中就隐含着近代积分的思想。
中国古代数学家也产生过积分学的萌芽思想,例如三国时期的刘徽,他对积分学的思想主要有两点:割圆术及求体积问题的设想。
基本初等函数的求导是数学中比较常考的一个知识点,我整理了基本初等函数的求导公式,大家可以温习一下。
16个基本初等函数的求导公式
1y=c y'=0
2 y=α^μ y'=μα^(μ-1)
3 y=a^x y'=a^x lna
y=e^x y'=e^x
4 y=loga,x y'=loga,e/x
y=lnx y'=1/x
5 y=sinx y'=cosx
6 y=cosx y'=-sinx
7 y=tanx y'=(secx)^2=1/(cosx)^2
8 y=cotx y'=-(cscx)^2=-1/(sinx)^2
9 y=arc sinx y'=1/√(1-x^2)
10y=arc cosx y'=-1/√(1-x^2)
11y=arc tanx y'=1/(1+x^2)
12y=arc cotx y'=-1/(1+x^2)
13y=sh x y'=ch x
14y=ch x y'=sh x
15y=thx y'=1/(chx)^2
16y=ar shx y'=1/√(1+x^2)
17y=ar chx y'=1/√(x^2-1)
18y=ar th y'=1/(1-x^2)
基本初等函数包括什么(1)常数函数y = c( c 为常数)
(2)幂函数y = x^a( a 为常数)
(3)指数函数y = a^x(a>0, a≠1)
(4)对数函数y =log(a) x(a>0, a≠1,真数x>0)
(5)三角函数以及反三角函数(如正弦函数 :y =sinx反正弦函数:y = arcsin x等)
基本初等函数,所谓初等函数就是由基本初等函数经过有些次的四则运算和复合而成的函数。初等函数是由基本初等函数经过有限次的有理运算和复合而成的并且可用一个式子表示的函数。基本初等函数和初等函数在其定义区间内均为连续函数。不是初等函数的函数,称为非初等函数,如狄利克雷函数和黎曼函数。
本题答案:f(x)。
[∫积分上限函数(x,0)f(y)]'=x’f(x)=f(x)
将原式展开,由于是对t的积分,(x-t)中的x是常数,可以提出来∫(0,x) (x-t)f(t)dt = x∫(0,x) f(t)dt - ∫(0,x) t f(t)dt 对x求导得 ∫(0,x) f(t)dt + xf(x) - xf(x) = ∫(0,x) f(t)dt。
扩展资料函数的性质
折叠函数有界性
设函数f(x)的定义域为D,数集X包含于D。如果存在数K1,使得f(x)≤K1对任一x∈X都成立,则称函数f(x)在X上有上界,而K1称为函数f(x)在X上的一个上界。如果存在数K2,使得f(x)≥K2对任一x∈X都成立,则称函数f(x)在X上有下界,而K2称为函数f(x)在X上的一个下界。
如果存在正数M,使得|f(x)|<=M对任一x∈X都成立,则称函数f(x)在X上有界,如果这样的M不存在,就称函数f(x)在X上无界。
函数f(x)在X上有界的充分必要条件是它在X上既有上界又有下界。
折叠函数的单调性
设函数f(x)的定义域为D,区间I包含于D。
如果对于区间I上任意两点x1及x2,当x1<x2时,恒有f(x1)<f(x2),则称函数f(x)在区间I上是单调增加的;如果对于区间I上任意两点x1及x2,当x1<x2时,恒有f(x1)>f(x2),则称函数f(x)在区间I上是单调减少的。
单调增加和单调减少的函数统称为单调函数。
折叠函数的奇偶性
设f(x)为一个实变量实值函数,则f为奇函数若下列的方程对所有实数x都成立:
f(x) = f( - x) 或f( -x) = - f(x) 几何上,一个奇函数与原点对称,亦即其图在绕原点做180度旋转后不会改变。
奇函数的例子有x、sin(x)、sinh(x)和erf(x)。
设f(x)为一实变量实值函数,则f为偶函数若下列的方程对所有实数x都成立:
f(x) = f( - x) 几何上,一个偶函数会对y轴对称,亦即其图在对y轴为镜射后不会改变。
偶函数的例子有|x|、x^2、cos(x)和cosh(sec)(x)。
偶函数不可能是个双射映射。
折叠函数的周期性
设函数f(x)的定义域为D。如果存在一个正数l,使得对于任一x∈D有(x士l)∈D,且f(x+l)=f(x)恒成立,则称f(x)为周期函数,l称为f(x)的周期,通常我们说周期函数的周期是指最小正周期。周期函数的定义域 D 为至少一边的无界区间,若D为有界的,则该函数不具周期性。
并非每个周期函数都有最小正周期,例如狄利克雷(Dirichlet)函数。
折叠函数的连续性
在数学中,连续是函数的一种属性。直观上来说,连续的函数就是当输入值的变化足够小的时候,输出的变化也会随之足够小的函数。
如果输入值的某种微小的变化会产生输出值的一个突然的跳跃甚至无法定义,则这个函数被称为是不连续的函数(或者说具有不连续性)。
设f是一个从实数集的子集射到 的函数:。f在中的某个点c处是连续的当且仅当以下的两个条件满足:
f在点c上有定义。c是中的一个聚点,并且无论自变量x在中以什么方式接近c,f(x) 的极限都存在且等于f(c)。
我们称函数到处连续或处处连续,或者简单的连续,如果它在其定义域中的任意点处都连续。更一般地,我们说一个函数在它定义域的子集上是连续的当它在这个子集的每一点处都连续。
不用极限的概念,也可以用下面所谓的 方法来定义实值函数的连续性。
仍然考虑函数。假设c是f的定义域中的元素。函数f被称为是在c点连续当且仅当以下条件成立:对于任意的正实数,存在一个正实数δ> 0 使得对于任意定义域中的,只要x满足c - δ< x < c + δ,就有成立。
折叠函数的凹凸性
设函数f(x)在I上连续。如果对于I上的两点x1≠x2,恒有f((x1+x2)/2)≤(f(x1)+f(x2))/2,(f((x1+x2)/2)<(f(x1)+f(x2))/2)那么称f(x)是区间I上的(严格)凸函数;
如果恒有f((x1+x2)/2)≥(f(x1)+f(x2))/2,(f((x1+x2)/2)>(f(x1)+f(x2))/2)那么称f(x)是区间上的(严格)凹函数。一些资料中常常仅定义凹函数,凸函数则称上凹函数,凹函数则称下凹函数。
折叠实函数和虚函数
实函数(Real function)是指定义域和值域均为实数域的函数。它的特性之一是一般可以在坐标上画出图形。
虚函数是面向对象程序设计中的一个重要的概念。当从父类中继承的时候,虚函数和被继承的函数具有相同的签名。
但是在运行过程中,运行系统将根据对象的类型,自动地选择适当的具体实现运行。虚函数是面向对象编程实现多态的基本手段。
参考链接:函数-
一点的一阶导数存在,只能保证在这一点连续,在领域内不一定连续
取f(x)=x²D(x),其中D(x)为狄利克雷函数
f′(0)=lim(f(x)-f(0))/(x-0) (x→0)
=lim xD(x) =0
0处一阶导数存在,
但在其他点上都不连续
分布函数不连续一般是因为随机变量的取值是不连续的
对于取值不连续的随机变量,可以引入狄利克雷函数δ(x)来构造概率密度
在分布函数不连续的点x0
f(x0)=[lim(x->x0+)F(x)-lim(x->x0-)F(x)]δ(x-x0)
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)